scholarly journals Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2

2018 ◽  
Vol 11 (5) ◽  
pp. 2863-2878 ◽  
Author(s):  
Yu Oishi ◽  
Haruma Ishida ◽  
Takashi Y. Nakajima ◽  
Ryosuke Nakamura ◽  
Tsuneo Matsunaga

Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near infrared Sensor for carbon Observations (TANSO)-Fourier transform spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while CLAUDIA1 and -3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow- and ice-covered surfaces, where there is not enough spectral contrast to identify cloud. In other words, visual inspection results can be used as truth data for accuracy evaluation of CLAUDIA1 and -3. For this reason visual inspection can be used for the truth metric for the cloud discrimination verification exercise. In this study, we compared CLAUDIA1–CAI and CLAUDIA3–CAI for various land cover types, and evaluated the accuracy of CLAUDIA3–CAI by comparing both CLAUDIA1–CAI and CLAUDIA3–CAI with visual inspection (400  ×  400 pixels) of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1–CAI and CLAUDIA3–CAI for various land cover types indicated that CLAUDIA3–CAI had a tendency to identify bright surface and optically thin clouds. However, CLAUDIA3–CAI had a tendency to misjudge the edges of clouds compared with CLAUDIA1–CAI. The accuracy of CLAUDIA3–CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1–CAI (85.9 %) for the test cases presented here.

2018 ◽  
Author(s):  
Yu Oishi ◽  
Haruma Ishida ◽  
Takashi Y. Nakajima ◽  
Ryosuke Nakamura ◽  
Tsuneo Matsunaga

Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the thermal and near-infrared sensor for carbon observation (TANSO)-Fourier transform spectrometer (FTS) and TANSO-cloud and aerosol imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gases concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Visual inspection can use the locally optimized standards for judging, although CLAUDIA1 and CLAUDIA3 use common thresholds all over the world. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow and ice covered surfaces, where there is not enough spectral contrast to distinguish cloud. For the reason visual inspection can be used for the truth metric for the verification exercise. In this study, we compared between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing the both of CLAUDIA1-CAI and CLAUDIA3-CAI against visual inspection of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had tendency to identify bright surface and optically thin clouds, however, misjudge the edges of clouds as compared with CLAUDIA1-CAI. The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 481-492 ◽  
Author(s):  
Faisal Khan ◽  
Frieder Enzmann ◽  
Michael Kersten

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.


2018 ◽  
Author(s):  
Mercy Nyamewaa Asiedu ◽  
Anish Simhal ◽  
Usamah Chaudhary ◽  
Jenna L. Mueller ◽  
Christopher T. Lam ◽  
...  

AbstractGoalIn this work, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol’s iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.MethodsWe developed algorithms to pre-process pathology-labeled cervigrams and to extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol’s iodine, and a combination of the two contrasts.ResultsThe proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, 63% accuracy).ConclusionThe results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol’s iodine images may provide unbiased automation of cervigrams.SignificanceThis would enable automated, expert-level diagnosis of cervical pre-cancer at the point-of-care.


Author(s):  
Fatima Mushtaq ◽  
Khalid Mahmood ◽  
Mohammad Chaudhry Hamid ◽  
Rahat Tufail

The advent of technological era, the scientists and researchers develop machine learning classification techniques to classify land cover accurately. Researches prove that these classification techniques perform better than previous traditional techniques. In this research main objective is to identify suitable land cover classification method to extract land cover information of Lahore district. Two supervised classification techniques i.e., Maximum Likelihood Classifier (MLC) (based on neighbourhood function) and Support Vector Machine (SVM) (based on optimal hyper-plane function) are compared by using Sentinel-2 data. For this optimization, four land cover classes have been selected. Field based training samples have been collected and prepared through a survey of the study area at four spatial levels. Accuracy for each of the classifier has been assessed using error matrix and kappa statistics. Results show that SVM performs better than MLC. Overall accuracies of SVM and MLC are 95.20% and 88.80% whereas their kappa co-efficient are 0.93 and 0.84 respectively.  


Author(s):  
Sajid Umair ◽  
Muhammad Majid Sharif

Prediction of student performance on the basis of habits has been a very important research topic in academics. Studies show that selection of the correct data set also plays a vital role in these predictions. In this chapter, the authors took data from different schools that contains student habits and their comments, analyzed it using latent semantic analysis to get semantics, and then used support vector machine to classify the data into two classes, important for prediction and not important. Finally, they used artificial neural networks to predict the grades of students. Regression was also used to predict data coming from support vector machine, while giving only the important data for prediction.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 380 ◽  
Author(s):  
Kai Ye

When identifying the key features of the network intrusion signal based on the GA-RBF algorithm (using the genetic algorithm to optimize the radial basis) to identify the key features of the network intrusion signal, the pre-processing process of the network intrusion signal data is neglected, resulting in an increase in network signal data noise, reducing the accuracy of key feature recognition. Therefore, a key feature recognition algorithm for network intrusion signals based on neural network and support vector machine is proposed. The principal component neural network (PCNN) is used to extract the characteristics of the network intrusion signal and the support vector machine multi-classifier is constructed. The feature extraction result is input into the support vector machine classifier. Combined with PCNN and SVM (Support Vector Machine) algorithms, the key features of network intrusion signals are identified. The experimental results show that the algorithm has the advantages of high precision, low false positive rate and the recognition time of key features of R2L (it is a common way of network intrusion attack) data set is only 3.18 ms.


2012 ◽  
Vol 263-266 ◽  
pp. 2995-2998
Author(s):  
Xiaoqin Zhang ◽  
Guo Jun Jia

Support vector machine (SVM) is suitable for the classification problem which is of small sample, nonlinear, high dimension. SVM in data preprocessing phase, often use genetic algorithm for feature extraction, although it can improve the accuracy of classification. But in feature extraction stage the weak directivity of genetic algorithm impact the time and accuracy of the classification. The ant colony algorithm is used in genetic algorithm selection stage, which is better for the data pretreatment, so as to improve the classification speed and accuracy. The experiment in the KDD99 data set shows that this method is feasible.


Sign in / Sign up

Export Citation Format

Share Document