scholarly journals The improved comparative reactivity method (ICRM): measurements of OH reactivity under high-NO<sub><i>x</i></sub> conditions in ambient air

2021 ◽  
Vol 14 (3) ◽  
pp. 2285-2298
Author(s):  
Wenjie Wang ◽  
Jipeng Qi ◽  
Jun Zhou ◽  
Bin Yuan ◽  
Yuwen Peng ◽  
...  

Abstract. The comparative reactivity method (CRM) was developed more than a decade to measure OH reactivity (i.e., OH loss frequency) in both laboratory and field studies. However, accurate OH reactivity quantification remains challenging under real ambient conditions, especially for OH reactivity measurements in high-NOx (e.g., > 10 ppbv) environments, as ambient NO enhances the regeneration of OH radicals in the CRM reactor. To solve this problem, we design a new and improved CRM reactor (ICRM) and add NO into the system continuously so that the HO2 radical concentration is suppressed. We confirmed the appropriate level of NO by determining the maximum decrease in the pyrrole level caused by regenerated OH radicals from NO + HO2. RO2 radicals induced by volatile organic compounds (VOCs) in the ICRM reactor were also found to react with NO, which led to the regeneration of OH radicals and thus the underestimation of OH reactivity. This effect was quantified by the calibration of representative VOC species at different NO levels, and the correction coefficients obtained were used to correct the measured OH reactivity. All these efforts resulted in reducing the uncertainty of the NO-artifact correction by at least an order of magnitude compared to the original CRM system. Additionally, these technological improvements also considerably reduced the systematic errors from pyrrole photolysis in the original system. A new operation mode was proposed for the ICRM, which is able to avoid the interference resulting from OH radicals produced by photolysis of residual humidity and save time for ambient measurement. The ICRM system was employed in a field campaign to measure OH reactivity and performed well with ambient NO levels ranging from 0 to 50 ppbv, which are typically observed in the urban and suburban atmosphere.

2020 ◽  
Author(s):  
Wenjie Wang ◽  
Jipeng Qi ◽  
Jun Zhou ◽  
Bin Yuan ◽  
Yuwen Peng ◽  
...  

Abstract. The comparative reactivity method (CRM) has been developed more than a decade to measure OH reactivity (i.e. OH loss frequency) in both laboratory and field studies. However, accurate OH reactivity quantification remains challenging under real ambient condition, especially for OH reactivity measurements in high-NOX (e.g. > 10 ppbv) environments, as ambient NO enhance regeneration of OH radicals in the CRM reactor. To resolve this problem, we design a new improved CRM reactor (ICRM) and add NO into the system continuously, so that the HO2 radical concentration is suppressed. We confirmed the appropriate level of NO by determining the maximum decrease in the pyrrole level caused by regenerated OH radicals from NO + HO2. VOC-induced RO2 radicals in the ICRM reactor were also found to react with NO, which lead to the re-generation of OH radicals thus the underestimation of OH reactivity. This effect was quantified by the calibration of representative VOC species at different NO levels, and the correction coefficients obtained were used to correct the measured OH reactivity. All these efforts resulted in reducing the uncertainty of the NO-artifact correction by at least an order of magnitude compared to the original CRM system. Additionally, these technological improvements also considerably reduced the systematic errors from pyrrole photolysis that exists in the original system. A new operation mode was proposed for ICRM, which is able to avoid the interference resulting from OH radicals produced by photolysis of residual humidity and save time for ambient measurement. The ICRM system was employed in a field campaign to measure OH reactivity and performed well with ambient NO levels ranged from 0 to 50 ppbv, which were typically observed in urban and suburban atmosphere.


2012 ◽  
Vol 12 (3) ◽  
pp. 7753-7791 ◽  
Author(s):  
H.-B. Dong ◽  
L.-M. Zeng ◽  
M. Hu ◽  
Y.-S. Wu ◽  
Y.-H. Zhang ◽  
...  

Abstract. An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98%) and particulate sulfate (as high as 99.5%). When applied in two major field campaigns (rural and coastal sites) in China, the GAC-IC system provided high-quality data in ambient conditions even under high loadings of pollutants. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer (43c, Thermo-Fisher, USA; R2 as 0.96), the HONO analyzer (LOPAP, Germany; R2 as 0.91 for nighttime samples), a filter sampler (Tianhong, China; R2 as 0.86 for SO42−), and Aerosol Mass Spectrometer (AMS, Aerodyne, USA; R2 above 0.77 for major species) over a wide range of concentrations. Through the application of the GAC-IC system, it was identified that 70% of chloride and nitrate by the filter method could be lost during daytime sampling due to high temperature in the rural site of Kaiping. In Changdao field campaign (coastal site) the comparison with the measurements by the GAC-IC suggested that the collection efficiency of AMS might be greatly influenced by high relative humidity (RH) especially in coastal or marine environment. Through laboratory and field studies, this instrument is proved highly reliable, which is particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation, as well as climate change.


2021 ◽  
Author(s):  
Wenjing Li ◽  
Shun Li ◽  
Lihua Luo ◽  
Yichen Ge ◽  
Jiaqi Xu ◽  
...  

The catalyst-free oxidative cleavage of (Z)-triaryl-substituted alkenes bearing pyridyl motif with ambient air under irradiation of blue LED at room temperature has been developed. The reaction was facile and scalable,...


2021 ◽  
Vol 02 ◽  
Author(s):  
Pernille D. Pedersen ◽  
Nina Lock ◽  
Henrik Jensen

: The NOx gasses (NO and NO2) are among the most important air pollutants, due to the toxicity of NO2, as well as the role of NOx in the tropospheric oxidation of Volatile Organic Carbons (VOCs), contributing to the formation of other hazardous air pollutants. Air pollution is one of the biggest health threats world-wide, hence reducing NOx levels is an important objective of the UN sustainable development goals, e.g. #3, “Good health and well-being” and #11 “Sustainable cities and communities”. Photocatalysis using TiO2 and light is a promising technique for removing NOx along with other pollutants, as demonstrated on laboratory scale. Furthermore, a long range of real-life test studies of varying scales have been conducted during the past two decades. The results of these studies have been conflicting, with some studies reporting no effect on the ambient air quality and others reporting significant reductions of NOx level. However, the studies are very difficult to compare and assess due to the very different approaches used, which consequently vary in quality. In this review, we aim to develop a set of objective evaluation criteria to assess the quality of the individual studies in order to simplify the interpretation and comparison of the existing studies. Moreover, we propose some guidelines for future test-studies. Furthermore, the approaches and main conclusions from 23 studies are independently assessed and discussed herein.


Author(s):  
Wesley R. Bussman ◽  
Charles E. Baukal

Because process heaters are typically located outside, their operation is subject to the weather. Heaters are typically tuned at a given set of conditions; however, the actual operating conditions may vary dramatically from season to season and sometimes even within a given day. Wind, ambient air temperature, ambient air humidity, and atmospheric pressure can all significantly impact the O2 level, which impacts both the thermal efficiency and the pollution emissions from a process heater. Unfortunately, most natural draft process burners are manually controlled on an infrequent basis. This paper shows how changing ambient conditions can considerably impact both CO and NOx emissions if proper adjustments are not made as the ambient conditions change. Data will be presented for a wide range of operating conditions to show how much the CO and NOx emissions can be affected by changes in the ambient conditions for fuel gas fired natural draft process heaters, which are the most common type used in the hydrocarbon and petrochemical industries. Some type of automated burner control, which is virtually non-existent today in this application, is recommended to adjust for the variations in ambient conditions.


Author(s):  
Ahmad M. Saleh ◽  
Donald W. Mueller ◽  
Hosni I. Abu-Mulaweh

This paper describes a mathematical model for simulating the transient processes which occur in liquid flat-plate solar collectors. A discrete nodal model that represents the flat-plate solar collector's layers and the storage tank is employed. The model is based on solving a system of coupled differential equations which describe the energy conservation for the glass cover, air gap, absorber, fluid, insulation, and the storage tank. Inputs to the model include the time-varying liquid flow rate, incident solar radiation, and the ambient air temperature, as well as the volume of liquid in the storage tank and initial temperature of the system. The system of differential equations is solved iteratively using an implicit, finite-difference formulation executed with Matlab software. In order to verify the proposed method, an experiment was designed and conducted on different days with variable ambient conditions and flow rates. The comparison between the computed and measured results of the transient fluid temperature at the collector outlet shows good agreement. The proposed method is extremely general and flexible accounting for variable ambient conditions and flow rates and allowing for a geometrical and thermophysical description of all major components of the solar collector system, including the storage tank. The validated, general model is suitable to investigate the effectiveness of various components without the necessity of carrying out experimental work, and the flexible computational scheme is useful for transient simulations of energy systems.


2015 ◽  
Vol 15 (21) ◽  
pp. 30409-30471 ◽  
Author(s):  
B. B. Palm ◽  
P. Campuzano-Jost ◽  
A. M. Ortega ◽  
D. A. Day ◽  
L. Kaser ◽  
...  

Abstract. Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24–80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.


2013 ◽  
Vol 13 (17) ◽  
pp. 9057-9082 ◽  
Author(s):  
T. Stavrakou ◽  
J.-F. Müller ◽  
K. F. Boersma ◽  
R. J. van der A ◽  
J. Kurokawa ◽  
...  

Abstract. Triggered by recent developments from laboratory and field studies regarding major NOx sink pathways in the troposphere, this study evaluates the influence of chemical uncertainties in NOx sinks for global NOx distributions calculated by the IMAGESv2 chemistry-transport model, and quantifies their significance for top-down NOx emission estimates. Our study focuses on five key chemical parameters believed to be of primary importance, more specifically, the rate of the reaction of NO2 with OH radicals, the newly identified HNO3-forming channel in the reaction of NO with HO2, the reactive uptake of N2O5 and HO2 by aerosols, and the regeneration of OH in the oxidation of isoprene. Sensitivity simulations are performed to estimate the impact of each source of uncertainty. The model calculations show that, although the NO2+OH reaction is the largest NOx sink globally accounting for ca. 60% of the total sink, the reactions contributing the most to the overall uncertainty are the formation of HNO3 in NO+HO2, leading to NOx column changes exceeding a factor of two over tropical regions, and the uptake of HO2 by aqueous aerosols, in particular over East and South Asia. Emission inversion experiments are carried out using model settings which either minimise (MINLOSS) or maximise (MAXLOSS) the total NOx sink, both constrained by one year of OMI NO2 column data from the DOMINO v2 KNMI algorithm. The choice of the model setup is found to have a major impact on the top-down flux estimates, with 75% higher emissions for MAXLOSS compared to the MINLOSS inversion globally. Even larger departures are found for soil NO (factor of 2) and lightning (1.8). The global anthropogenic source is better constrained (factor of 1.57) than the natural sources, except over South Asia where the combined uncertainty primarily associated to the NO+HO2 reaction in summer and HO2 uptake by aerosol in winter lead to top-down emission differences exceeding a factor of 2. Evaluation of the emission optimisation is performed against independent satellite observations from the SCIAMACHY sensor, with airborne NO2 measurements of the INTEX-A and INTEX-B campaigns, as well as with two new bottom-up inventories of anthropogenic emissions in Asia (REASv2) and China (MEIC). Neither the MINLOSS nor the MAXLOSS setup succeeds in providing the best possible match with all independent datasets. Whereas the minimum sink assumption leads to better agreement with aircraft NO2 profile measurements, consistent with the results of a previous analysis (Henderson et al., 2012), the same assumption leads to unrealistic features in the inferred distribution of emissions over China. Clearly, although our study addresses an important issue which was largely overlooked in previous inversion exercises, and demonstrates the strong influence of NOx loss uncertainties on top-down emission fluxes, additional processes need to be considered which could also influence the inferred source.


2011 ◽  
Vol 43 (12) ◽  
pp. 2838-2856 ◽  
Author(s):  
Russell Hitchings

Though many people around the world now spend much of their time surrounded by bodies of controlled ambient air indoors, we still know relatively little about the subjectivities involved. Some have deployed the idea of air-conditioning addiction. Others emphasise the enjoyable sensations associated with temporary escape. The research described in this paper sought to add some empirical depth to these discussions by combining theories of social practice with a programme of serial interviews to examine how a sample of city professionals felt about the long periods they spent inside air-conditioned offices. The rationale was that, through these means, it should be possible to identify ways of disrupting otherwise habitual indoor existences and thereby discourage people from becoming increasingly reliant upon ambient conditions that are environmentally costly to supply. Describing their passage through a typical working day, this paper focuses on the moments when it might have occurred to them to spend time outside and how certain mental and material elements combined to impede the arrival of this decision. This exercise is used to draw out suggestions about how a better relationship between professional office workers and the everyday outdoors could be encouraged. The broader conclusion is that contextual studies which examine how places and practices produce decisions, instead of assuming individual people merely make them, have their part to play in fostering positive social futures.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Luis A. Ferraz-Albani ◽  
Alberto Baldelli ◽  
Chrissy J. Knapp ◽  
Wolfgang Jäger ◽  
Reinhard Vehring ◽  
...  

Enhancement of water droplet evaporation by added infrared radiation was modeled and studied experimentally in a vertical laminar flow channel. Experiments were conducted on droplets with nominal initial diameters of 50 μm in air with relative humidities ranging from 0% to 90% RH. A 2800 nm laser was used with radiant flux densities as high as 4 × 105 W/m2. Droplet size as a function of time was measured by a shadowgraph technique. The model assumed quasi-steady behavior, a low Biot number liquid phase, and constant gas–vapor phase material properties, while the experimental results were required for model validation and calibration. For radiant flux densities less than 104 W/m2, droplet evaporation rates remained essentially constant over their full evaporation, but at rates up to 10% higher than for the no radiation case. At higher radiant flux density, the surface-area change with time became progressively more nonlinear, indicating that the radiation had diminished effects on evaporation as the size of the droplets decreased. The drying time for a 50 μm water droplet was an order of magnitude faster when comparing the 106 W/m2 case to the no radiation case. The model was used to estimate the droplet temperature. Between 104 and 5 × 105 W/m2, the droplet temperature changed from being below to above the environment temperature. Thus, the direction of conduction between the droplet and the environment also changed. The proposed model was able to predict the changing evaporation rates for droplets exposed to radiation for ambient conditions varying from dry air to 90% relative humidity.


Sign in / Sign up

Export Citation Format

Share Document