scholarly journals Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto)

2021 ◽  
Vol 14 (1) ◽  
pp. 269-293
Author(s):  
Cyril Brunner ◽  
Zamin A. Kanji

Abstract. The incomplete understanding of aerosol–cloud interactions introduces large uncertainties when simulating the cloud radiative forcing in climate models. The physical and optical properties of a cloud, as well as the evolution of precipitation, are strong functions of the cloud hydrometeor phase. Aerosol particles support the phase transition of water in the atmosphere from a meta-stable to a thermodynamically preferred stable phase. In the troposphere, the transition of liquid droplets to ice crystals in clouds, via ice-nucleating particles (INPs) which make up only a tiny fraction of all tropospheric aerosol, is of particular relevance. For accurate cloud modeling in climate projections, the parameterization of cloud processes and information such as the concentrations of atmospheric INPs are needed. Presently, only few continuous real-time INP counters are available and the data acquisition often still requires a human operator. To address this restriction, we developed HINC-Auto, a fully automated online INP counter, by adapting an existing custom-built instrument, the Horizontal Ice Nucleation Chamber. HINC-Auto was able to autonomously sample INPs in the immersion mode at a temperature of 243 K and a water saturation ratio of 1.04 for 97 % of the time for 90 consecutive days. Here, we present the technical setup used to acquire automation, discuss improvements to the experimental precision and sampling time, and validate the instrument performance. In the future, the chamber will allow a detailed temporal analysis (including seasonal and annual variability) of ambient INP concentrations observing repeated meteorological phenomena compared to previous episodic events detected during campaigns. In addition, by deploying multiple chambers at different locations, a spatiotemporal variability of INPs at any sampling site used for monitoring INP analysis can be achieved for temperatures ≤ 243 K.

2020 ◽  
Author(s):  
Cyril Brunner ◽  
Zamin A. Kanji

Abstract. The incomplete understanding of aerosol-cloud interactions introduces large uncertainties when simulating the cloudradiative forcing in climate models. The physical and optical properties of a cloud, as well as the evolution of precipitation, are strong functions of the cloud hydrometeor phase. Aerosol particles support the phase transition of water in the atmosphere from a meta-stable to a thermodynamically preferred, stable phase. In the troposphere, the transition of liquid droplets to ice crystals in clouds, via ice nucleating particles (INPs) which make up only a tiny fraction of all tropospheric aerosol, is of particular relevance. For accurate cloud modeling in climate projections, the parameterization of cloud processes and information such as the concentrations of atmospheric INPs are needed. Presently, no continuous real-time INP counter is available and the data acquisition still requires a human operator. To address this restriction, we developed HINC-Auto, a fully automatedonline INP counter, by adapting an existing custom-built instrument, the Horizontal Ice Nucleation Chamber. HINC-Auto was able to autonomously sample INPs in the immersion mode at a temperature of 243 K and a water saturation ratio of 1.04 for 97 % of the time for 90 consecutive days. Here we present the technical setup used to acquire automation, discuss improvements to the the experimental precision and sampling time, and validate the instrument performance. In the future, the chamber will allow a detailed temporal analysis (including seasonal and annual variability) of ambient INP concentrations observing repeated meteorological phenomena compared to previous episodic events detected during campaigns. In addition, by deploying multiple chambers at different locations, a spatio-temporal variability of INPs at any sampling site used for monitoring INP analysis can be achieved for temperatures ≤ 243 K.


2021 ◽  
Author(s):  
Junichi Tsutsui

<p>One of the key applications of simple climate models is probabilistic climate projections to assess a variety of emission scenarios in terms of their compatibility with global warming mitigation goals. The second phase of the Reduced Complexity Model Intercomparison Project (RCMIP) compares nine participating models for their probabilistic projection methods through scenario experiments, focusing on consistency with given constraints for climate indicators including radiative forcing, carbon budget, warming trends, and climate sensitivity. The MCE is one of the nine models, recently developed by the author, and has produced results that well match the ranges of the constraints. The model is based on impulse response functions and parameterized physics of effective radiative forcing and carbon uptake over ocean and land. Perturbed model parameters are generated from statistical models and constrained with a Metropolis-Hastings independence sampler. A parameter subset associated with CO<sub>2</sub>-induced warming is assured to have a covariance structure as diagnosed from complex climate models of the Coupled Model Intercomparison Project (CMIP). The model's simplicity and the successful results imply that a method with less complicated structures and fewer control parameters has an advantage when building reasonable perturbed ensembles in a transparent way despite less capacity to emulate detailed Earth system components. Experimental results for future scenarios show that the climate sensitivity of CMIP models is overestimated overall, suggesting that probabilistic climate projections need to be constrained with observed warming trends.</p>


2020 ◽  
Author(s):  
Klaus Wyser ◽  
Erik Kjellström ◽  
Torben Koenigk ◽  
Helena Martins ◽  
Ralf Döscher

<p>Many modelling groups have contributed with CMIP6 scenario experiments to the CMIP6 archive. The analysis of CMIP6 future projections has started and first results indicate that CMIP6 projections are warmer than their counterparts from CMIP5. To some extent this is explained with the higher climate sensitivity of many of the new generation of climate models. However, not only have models been updated since CMIP5 but also the forcings have changed from RCPs to SSPs. The new SSPs have been designed to have the same instantaneous radiative forcing at the end of the 21st century. However, we find that in the EC-Earth3 model the effective radiative forcing differs substantially when the GHG concentrations from the SSP are replaced by those from the corresponding RCP with the same nameplate RF. We estimate that for the SSP5-8.5 and SSP2-4.5 scenarios 50% or more of the stronger warming in CMIP6 than CMIP5 for the EC-Earth model can be explained by changes in GHG gas concentrations. Other changes in the forcing datasets such as aerosols only play a minor role for the additional warming. The discrepancy between RCP and SSP forcing datasets needs to be accounted for when comparing CMIP5 and CMIP6 climate projections and should be properly conveyed to the climate impact, adaptation and mitigation communities.</p>


2019 ◽  
Vol 116 (17) ◽  
pp. 8184-8189 ◽  
Author(s):  
Robert O. David ◽  
Claudia Marcolli ◽  
Jonas Fahrni ◽  
Yuqing Qiu ◽  
Yamila A. Perez Sirkin ◽  
...  

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.


2008 ◽  
Vol 21 (1) ◽  
pp. 58-71 ◽  
Author(s):  
Jonathan Gregory ◽  
Mark Webb

Abstract The radiative forcing of CO2 and the climate feedback parameter are evaluated in several climate models with slab oceans by regressing the annual-mean global-mean top-of-atmosphere radiative flux against the annual-mean global-mean surface air temperature change ΔT following a doubling of atmospheric CO2 concentration. The method indicates that in many models there is a significant rapid tropospheric adjustment to CO2 leading to changes in cloud, and reducing the effective radiative forcing, in a way analogous to the indirect and semidirect effects of aerosol. By contrast, in most models the cloud feedback is small, defined as the part of the change that evolves with ΔT. Comparison with forcing evaluated by fixing sea surface conditions gives qualitatively similar results for the cloud components of forcing, both globally and locally. Tropospheric adjustment to CO2 may be responsible for some of the model spread in equilibrium climate sensitivity and could affect time-dependent climate projections.


2019 ◽  
Vol 9 (24) ◽  
pp. 5416 ◽  
Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

Climatic loads on structures are commonly defined under the assumption of stationary climate conditions; but, as confirmed by recent studies, they can significantly vary because of climate change effects, with relevant impacts not only for the design of new structures but also for the assessment of the existing ones. In this paper, a general methodology to evaluate the influence of climate change on climatic actions is presented, based on the analysis of observed data series and climate projections. Illustrative results in terms of changes in characteristic values of temperature, precipitation, snow, and wind loads are discussed for Italy and Germany, with reference to different climate models and radiative forcing scenarios. In this way, guidance for potential amendments in the current definition of climatic actions in structural codes is provided. Finally, the influence of climate change on the long-term structural reliability is estimated for a specific case study, showing the potential of the proposed methodology.


2012 ◽  
Vol 12 (3) ◽  
pp. 6745-6803
Author(s):  
V. I. Khvorostyanov ◽  
J. A. Curry

Abstract. A new analytical parameterization of homogeneous ice nucleation is developed based on extended classical nucleation theory including new equations for the critical radii of the ice germs, free energies and nucleation rates as the functions of the temperature and water saturation ratio simultaneously. By representing these quantities as separable products of the analytical functions of the temperature and supersaturation, analytical solutions are found for the integral-differential supersaturation equation and concentration of nucleated crystals. Parcel model simulations are used to illustrate the general behavior of various nucleation properties under various conditions, for justifications of the further key analytical simplifications, and for verification of the resulting parameterization. The final parameterization is based upon the values of the supersaturation that determines the current or maximum concentrations of the nucleated ice crystals. The crystal concentration is analytically expressed as a function of time and can be used for parameterization of homogeneous ice nucleation both in the models with small time steps and for substep parameterization in the models with large time steps. The crystal concentration is expressed analytically via the error functions or elementary functions and depends only on the fundamental atmospheric parameters and parameters of classical nucleation theory. The diffusion and kinetic limits of the new parameterization agree with previous semi-empirical parameterizations.


2021 ◽  
Author(s):  
Junichi Tsutsui

Abstract. Climate model emulators have a crucial role in assessing warming levels of many emission scenarios from probabilistic climate projections, based on new insights into Earth system response to CO2 and other forcing factors. This article describes one such tool, MCE, from model formulation to application examples associated with a recent model intercomparison study. The MCE is based on impulse response functions and parameterized physics of effective radiative forcing and carbon uptake over ocean and land. Perturbed model parameters for probabilistic projections are generated from statistical models and constrained with a Metropolis-Hastings independence sampler. A part of the model parameters associated with CO2-induced warming have a covariance structure, as diagnosed from complex climate models of the Coupled Model Intercomparison Project (CMIP). Although perturbed ensembles can cover the diversity of CMIP models effectively, they need to be constrained toward substantially lower climate sensitivity for the resulting historical warming to agree with the observed trends over recent decades. The model's simplicity and resulting successful calibration imply that a method with less complicated structures and fewer control parameters offers advantages when building reasonable perturbed ensembles in a transparent way. Experimental results for future scenarios show distinct differences between CMIP- and observation-consistent ensembles, suggesting that perturbed ensembles for scenario assessment need to be properly constrained with new insights into forced response over historical periods.


2012 ◽  
Vol 12 (19) ◽  
pp. 9275-9302 ◽  
Author(s):  
V. I. Khvorostyanov ◽  
J. A. Curry

Abstract. A new analytical parameterization of homogeneous ice nucleation is developed based on extended classical nucleation theory including new equations for the critical radii of the ice germs, free energies and nucleation rates as simultaneous functions of temperature and water saturation ratio. By representing these quantities as separable products of the analytical functions of temperature and supersaturation, analytical solutions are found for the integral-differential supersaturation equation and concentration of nucleated crystals. Parcel model simulations are used to illustrate the general behavior of various nucleation properties under various conditions, for justifications of the further key analytical simplifications, and for verification of the resulting parameterization. The final parameterization is based upon the values of the supersaturation that determines the current or maximum concentrations of the nucleated ice crystals. The crystal concentration is analytically expressed as a function of time and can be used for parameterization of homogeneous ice nucleation both in the models with small time steps and for substep parameterization in the models with large time steps. The crystal concentration is expressed analytically via the error functions or elementary functions and depends only on the fundamental atmospheric parameters and parameters of classical nucleation theory. The diffusion and kinetic limits of the new parameterization agree with previous semi-empirical parameterizations.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


Sign in / Sign up

Export Citation Format

Share Document