scholarly journals Estimation and Evaluation of COSMIC Radio Occultation Excess Phase Using Non-differenced Measurements

2016 ◽  
Author(s):  
Pengfei Xia ◽  
Shirong Ye ◽  
Kecai Jiang ◽  
Dezhong Chen

Abstract. In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-differenced or single-differenced techniques. These two techniques, however, require the reference link data in the data processing increasing the complexity of computation. In this study, a non-differenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we used PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the COSIMC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellite to acquire the position and velocity of the center of mass of the satellite and the corresponded receive clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP by the ROPP (Radio Occultation Processing Package) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Comparison results indicate that RMS (root mean square) errors of relative refractivity differences between ND-derived and "atmPrf" profiles are better than 4 % and 3 % in rising and setting occultation events, respectively. In addition, we also compared the relative refractivity bias between ND-derived and "atmPrf" profiles of globally distributed 200 COSMIC occultation events on December 12, 2013. The statistic results show that the average RMS relative refractivity deviation between ND-derived and COSMIC profile is better than 2 % in the rising occultation event, and it is better than 1.7 % in setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium-Range Weather Forecasts (ECMWF) analyses data, and the results indicate that non-differencing reduces the noise level on the excess phase paths in the lower troposphere compared to single difference processing strategy.

2017 ◽  
Vol 10 (5) ◽  
pp. 1813-1821
Author(s):  
Pengfei Xia ◽  
Shirong Ye ◽  
Kecai Jiang ◽  
Dezhong Chen

Abstract. In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity, which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-difference or single-difference techniques. These two techniques, however, rely on the reference data in the data processing, increasing the complexity of computation. In this study, an undifferenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we use PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the purpose of acquiring the position and velocity of the mass centre of the COSMIC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellites and the corresponding receiver clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP using Radio Occultation Processing Package (ROPP) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Results indicate that rms (root mean square) errors of relative refractivity differences between undifferenced and atmospheric profiles (atmPrf) provided by UCAR/CDAAC (University Corporation for Atmospheric Research/COSMIC Data Analysis and Archive Centre) are better than 4 and 3 % in rising and setting occultation events respectively. In addition, we also compare the relative refractivity bias between ND-derived methods and atmPrf profiles of globally distributed 200 COSMIC occultation events on 12 December 2013. The statistical results indicate that the average rms relative refractivity deviation between ND-derived and COSMIC profiles is better than 2 % in the rising occultation event and better than 1.7 % in the setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data, and the results indicate that the undifferenced method reduces the noise level on the excess phase paths in the lower troposphere compared to the single-difference processing strategy.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


2014 ◽  
Vol 7 (12) ◽  
pp. 12719-12733 ◽  
Author(s):  
F. Zus ◽  
G. Beyerle ◽  
S. Heise ◽  
T. Schmidt ◽  
J. Wickert

Abstract. The Global Positioning System (GPS) radio occultation (RO) technique provides valuable input for numerical weather prediction and is considered as a data source for climate related research. Numerous studies outline the high precision and accuracy of RO atmospheric soundings in the upper troposphere and lower stratosphere. In this altitude region (8–25 km) RO atmospheric soundings are considered to be free of any systematic error. In the tropical (30° S–30° N) Lower (<8 km) Troposphere (LT), this is not the case; systematic differences with respect to independent data sources exist and are still not completely understood. To date only little attention has been paid to the Open Loop (OL) Doppler model. Here we report on a RO experiment carried out on-board of the twin satellite configuration TerraSAR-X and TanDEM-X which possibly explains to some extent biases in the tropical LT. In two sessions we altered the OL Doppler model aboard TanDEM-X by not more than ±5 Hz with respect to TerraSAR-X and compare collocated atmospheric refractivity profiles. We find a systematic difference in the retrieved refractivity. The bias mainly stems from the tropical LT; there the bias reaches up to ±1%. Hence, we conclude that the negative bias (several Hz) of the OL Doppler model aboard TerraSAR-X introduces a negative bias (in addition to the negative bias which is primarily caused by critical refraction) in our retrieved refractivity in the tropical LT.


2011 ◽  
Vol 28 (6) ◽  
pp. 737-751 ◽  
Author(s):  
Michael E. Gorbunov ◽  
A. V. Shmakov ◽  
Stephen S. Leroy ◽  
Kent B. Lauritsen

Abstract A radio occultation data processing system (OCC) was developed for numerical weather prediction and climate benchmarking. The data processing algorithms use the well-established Fourier integral operator–based methods, which ensure a high accuracy of retrievals. The system as a whole, or in its parts, is currently used at the Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) Satellite Application Facility at the Danish Meteorological Institute, German Weather Service, and Wegener Center for Climate and Global Change. A statistical comparison of the inversions of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data by the system herein, University Corporation for Atmospheric Research (UCAR) data products, and ECMWF analyses is presented. Forty days of 2007 and 2008 were processed (from 5 days in the middle of each season) for the comparison of OCC and ECMWF, and 20 days of April 2009 were processed for the comparison of OCC, UCAR, and ECMWF. The OCC and UCAR inversions are consistent. For the tropics, the systematic difference between OCC and UCAR in the retrieved refractivity in the 2–30-km height interval does not exceed 0.1%; in particular, in the 9–25-km interval it does not exceed 0.03%. Below 1 km in the tropics the OCC – UCAR bias reaches 0.2%, which is explained by different cutoff and filtering schemes implemented in the two systems. The structure of the systematic OCC – ECMWF difference below 4 km changes in 2007, 2008, and 2009, which is explained by changes in the ECMWF analyses and assimilation schemes. It is estimated that in the 4–30-km height range the OCC occultation processing system obtains refractivities with a bias not exceeding 0.2%. The random error ranges from 0.3%–0.5% in the upper troposphere–lower stratosphere to about 2% below 4 km. The estimate of the bias below 4 km can currently be done with an accuracy of 0.5%–1% resulting from the structural uncertainty of the radio occultation (RO) data reflecting the insufficient knowledge of the atmospheric small-scale structures and instrumental errors. The OCC – UCAR bias is below the level of the structural uncertainty.


2017 ◽  
Author(s):  
Michael Gorbunov ◽  
Gottfried Kirchengast

Abstract. A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle retrieval in the lower troposphere and introduce 1. an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in the lowest about two kilometers of the troposphere, and 2. the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms predictors and adaptive functions (powers and cross-products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform amplitude and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction, capable of reducing bending angle and corresponding refractivity biases by about a factor of five. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower-bounded by the uncertainty from (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging that this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.


2018 ◽  
Vol 11 (2) ◽  
pp. 819-833 ◽  
Author(s):  
Weihua Bai ◽  
Congliang Liu ◽  
Xiangguang Meng ◽  
Yueqiang Sun ◽  
Gottfried Kirchengast ◽  
...  

Abstract. The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou System (BDS) and the US Global Positioning System (GPS). An ultra-stable oscillator with 1 s stability (Allan deviation) at the level of 10−12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and four medium Earth orbit (MEO) satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013) for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation) of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 %) over the upper troposphere and lower stratosphere. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise. The validation results indicate that GNOS can provide, on top of GPS RO profiles, accurate and precise BDS RO profiles both from single- and zero-difference processing. The GNOS observations by the series of FY-3 satellites are thus expected to provide important contributions to numerical weather prediction and global climate change analysis.


2018 ◽  
Vol 11 (4) ◽  
pp. 2051-2066 ◽  
Author(s):  
Xiao Yu ◽  
Feiqin Xie ◽  
Chi O. Ao

Abstract. Lower-tropospheric moisture and temperature measurements are crucial for understanding weather prediction and climate change. Global Positioning System radio occultation (GPS RO) has been demonstrated as a high-quality observation technique with high vertical resolution and sub-kelvin temperature precision from the upper troposphere to the stratosphere. In the tropical lower troposphere, particularly the lowest 2 km, the quality of RO retrievals is known to be degraded and is a topic of active research. However, it is not clear whether similar problems exist at high latitudes, particularly over the Arctic, which is characterized by smooth ocean surface and often negligible moisture in the atmosphere. In this study, 3-year (2008–2010) GPS RO soundings from COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) over the Arctic (65–90° N) show uniform spatial sampling with average penetration depth within 300 m above the ocean surface. Over 70 % of RO soundings penetrate deep into the lowest 300 m of the troposphere in all non-summer seasons. However, the fraction of such deeply penetrating profiles reduces to only about 50–60 % in summer, when near-surface moisture and its variation increase. Both structural and parametric uncertainties of GPS RO soundings were also analyzed. The structural uncertainty (due to different data processing approaches) is estimated to be within  ∼  0.07 % in refractivity,  ∼  0.72 K in temperature, and  ∼  0.05 g kg−1 in specific humidity below 10 km, which is derived by comparing RO retrievals from two independent data processing centers. The parametric uncertainty (internal uncertainty of RO sounding) is quantified by comparing GPS RO with near-coincident radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim profiles. A systematic negative bias up to  ∼  1 % in refractivity below 2 km is only seen in the summer, which confirms the moisture impact on GPS RO quality.


2012 ◽  
Vol 140 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Hui Liu ◽  
Jeffrey Anderson ◽  
Ying-Hwa Kuo

Abstract Radio occultation (RO) refractivity observations provide information about tropospheric water vapor and temperature in all weather conditions. The impact of using RO refractivity observations on analyses and forecasts of Hurricane Ernesto’s genesis (2006) using an ensemble Kaman filter data assimilation system is investigated. Assimilating RO refractivity profiles in the vicinity of the storm locally moistens the analysis of the lower troposphere and also adjusts the wind analysis in both the lower and upper troposphere through forecast multivariate correlations of RO refractivity and wind. The model forecasts propagate and enhance the added water vapor and the wind adjustments leading to more accurate analyses of the later stages of the genesis of the storm. The root-mean-square errors of water vapor and wind forecasts compared to dropsonde and radiosonde observations are reduced consistently. As a result, assimilating RO refractivity data in addition to traditional observations leads to a stronger initial vortex of the storm and improved forecasts of the storm’s intensification. The benefits of the RO data are much reduced when the RO data in the lower troposphere (below 6 km) are ignored.


2019 ◽  
Vol 11 (2) ◽  
pp. 390-401 ◽  
Author(s):  
Onur Genc ◽  
Ozgur Kisi ◽  
Mehmet Ardiclioglu

Abstract Accurate estimation of velocity distribution in open channels or streams (especially in turbulent flow conditions) is very important and its measurement is very difficult because of spatio-temporal variation in velocity vectors. In the present study, velocity distribution in streams was estimated by two different artificial neural networks (ANN), ANN with conjugate gradient (ANN-CG) and ANN with Levenberg–Marquardt (ANN-LM), and two different adaptive neuro-fuzzy inference systems (ANFIS), ANFIS with grid partition (ANFIS-GP) and ANFIS with subtractive clustering (ANFIS-SC). The performance of the proposed models was compared with the multiple-linear regression (MLR) model. The comparison results revealed that the ANN-CG, ANN-LM, ANFIS-GP, and ANFIS-SC models performed better than the MLR model in estimating velocity distribution. Among the soft computing methods, the ANFIS-GP was observed to be better than the ANN-CG, ANN-LM, and ANFIS-SC models. The root mean square errors (RMSE) and mean absolute errors (MAE) of the MLR model were reduced by 69% and 72%, respectively, using the ANFIS-GP model to estimate velocity distribution in the test period.


Sign in / Sign up

Export Citation Format

Share Document