scholarly journals Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations

2018 ◽  
Author(s):  
Patrick Hannawald ◽  
Carsten Schmidt ◽  
René Sedlak ◽  
Sabine Wüst ◽  
Michael Bittner

Abstract. Between December 2013 and August 2017 the instrument FAIM (Fast Airglow IMager) observed the OH airglow emission at two Alpine stations. One year of measurements was performed at Oberpfaffenhofen, Germany (48.09° N, 11.28° E) and two years at Sonnblick, Austria (47.05° N, 12.96° E). Both stations are part of the Network for the detection of mesospheric change (NDMC). The temporal resolution is two frames per second and the field of view is 55 km × 60 km and 75 km × 90 km at the OH layer altitude of 87 km with a spatial resolution of 200 m and 280 m per pixel, respectively. This results in two dense datasets allowing precise derivation of horizontal gravity wave parameters. The analysis is based on a two-dimensional Fast Fourier Transform with fully automatic peak extraction. By combining the information of consecutive images time-dependent parameters such as the horizontal phase speed are extracted. The instrument is mainly sensitive to high-frequency small- and medium-scale gravity waves. A clear seasonal dependency concerning the meridional propagation direction is found for these waves in summer in direction to the summer pole. The zonal direction of propagation is eastwards in summer and westwards in winter. Investigations of the data set revealed an intra-diurnal variability, which may be related to tides. The observed horizontal phase speed and the number of wave events per observation hour are higher in summer than in winter.

2019 ◽  
Vol 12 (1) ◽  
pp. 457-469 ◽  
Author(s):  
Patrick Hannawald ◽  
Carsten Schmidt ◽  
René Sedlak ◽  
Sabine Wüst ◽  
Michael Bittner

Abstract. Between December 2013 and August 2017 the instrument FAIM (Fast Airglow IMager) observed the OH airglow emission at two Alpine stations. A year of measurements was performed at Oberpfaffenhofen, Germany (48.09∘ N, 11.28∘ E) and 2 years at Sonnblick, Austria (47.05∘ N, 12.96∘ E). Both stations are part of the network for the detection of mesospheric change (NDMC). The temporal resolution is two frames per second and the field-of-view is 55 km × 60 km and 75 km × 90 km at the OH layer altitude of 87 km with a spatial resolution of 200 and 280 m per pixel, respectively. This resulted in two dense data sets allowing precise derivation of horizontal gravity wave parameters. The analysis is based on a two-dimensional fast Fourier transform with fully automatic peak extraction. By combining the information of consecutive images, time-dependent parameters such as the horizontal phase speed are extracted. The instrument is mainly sensitive to high-frequency small- and medium-scale gravity waves. A clear seasonal dependency concerning the meridional propagation direction is found for these waves in summer in the direction to the summer pole. The zonal direction of propagation is eastwards in summer and westwards in winter. Investigations of the data set revealed an intra-diurnal variability, which may be related to tides. The observed horizontal phase speed and the number of wave events per observation hour are higher in summer than in winter.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 880
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Cosme Alexandre Oliveira Barros Figueiredo ◽  
Cristiano Max Wrasse ◽  
Hosik Kam ◽  
...  

This work presents the characteristics of gravity waves observed over Comandante Ferraz Antarctic Station (EACF: 62.1° S, 58.4° W). A total of 122 gravity waves were observed in 34 nights from March to October 2017, and their parameters were obtained by using the Fourier Transform spectral analysis. The majority of the observed waves presented horizontal wavelength ranging from 15 to 35 km, period from 5 to 20 min, and horizontal phase speed from 10 to 70 ± 2 m·s−1. The propagation direction showed an anisotropic condition, with the slower wave propagating mainly to the west, northwest and southeast directions, while the faster waves propagate to the east, southeast and south. Blocking diagrams for the period of April–July showed a good agreement between the wave propagation direction and the blocking positions, which are eastward oriented while the waves propagate mainly westward. A case study to investigate wave sources was conducted for the night of 20–21 July, wherein eight small-scale and one medium-scale gravity waves were identified. Reverse ray tracing model was used to investigate the gravity wave source, and the results showed that six among eight small-scale gravity waves were generated in the mesosphere. On the other hand, only two small-scale waves and the medium-scale gravity wave had likely tropospheric or stratospheric origin, however, they could not be associated with any reliable source.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 620 ◽  
Author(s):  
David Jesch ◽  
Alexander S. Medvedev ◽  
Francesco Castellini ◽  
Erdal Yiğit ◽  
Paul Hartogh

The upper atmosphere of Mars is constantly perturbed by small-scale gravity waves propagating from below. As gravity waves strongly affect the large-scale dynamics and thermal state, constraining their statistical characteristics is of great importance for modeling the atmospheric circulation. We present a new data set of density perturbation amplitudes derived from accelerometer measurements during aerobraking of the European Space Agency’s Trace Gas Orbiter. The obtained data set presents features found by three previous orbiters: the lower thermosphere polar warming in the winter hemisphere, and the lack of links between gravity wave activity and topography. In addition, the orbits allowed for demonstrating a very weak diurnal variability in wave activity at high latitudes of the southern winter hemisphere for the first time. The estimated vertical damping rates of gravity waves agree well with theoretical predictions. No clear anticorrelation between perturbation amplitudes and the background temperature has been found. This indicates differences in dissipation mechanisms of gravity waves in the lower and upper thermosphere.


2021 ◽  
Author(s):  
Athina Peidou ◽  
Felix Landerer ◽  
David Wiese ◽  
Matthias Ellmer ◽  
Eugene Fahnestock ◽  
...  

<p>The performance of Gravity Recovery and Climate Experiment Follow‐On (GRACE-FO) laser ranging interferometer (LRI) system is assessed in both space and frequency domains. With LRI’s measurement sensitivity being as small as 0.05 nm/s<sup>2</sup> at GRACE-FO altitude we perform a thorough assessment on the ability of the instrument to detect real small-scale high-frequency gravity signals. Analysis of range acceleration measurements along the orbit for nearly one year of daily solutions suggests that LRI can detect signals induced by mass perturbation up to 26 mHz, i.e., ~145 km spatial resolution. Additionally, high frequency signals that are not adequately modeled by dealiasing models are clearly detected and their magnitude is shown to reach 2-3 nm/s<sup>2</sup>. The alternative K‐band microwave ranging system (KBR) is also examined and results demonstrate the inability of KBR to retrieve signals above 15mHz (i.e., shorter than ~200 km) as the noise of the KBR range acceleration increases rapidly. Overall, the first stream of LRI measurements shows that the high signal to noise ratio allows for detection of mass transfers in finer scales, however the ability to fully exploit the high-quality signal measured by the LRI in Level 2 products is still constrained by noise of background models and other onboard instrumentation and measurement system errors.</p><p>Copyright Acknowledgment: This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.</p>


2015 ◽  
Vol 15 (5) ◽  
pp. 2709-2721 ◽  
Author(s):  
M. Pramitha ◽  
M. Venkat Ratnam ◽  
A. Taori ◽  
B. V. Krishna Murthy ◽  
D. Pallamraju ◽  
...  

Abstract. Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki (13.5° N, 79.2° E) and Hyderabad (17.5° N, 78.5° E) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. The ray tracing is performed using background temperature and wind data obtained from the MSISE-90 and HWM-07 models, respectively. For the Gadanki region, the suitability of these models is tested. Further, a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground-based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. ERA-Interim products are utilized for constructing background parameters corresponding to the meteorological conditions of the observations. With the reverse ray-tracing method, the source locations for nine wave events could be identified to be in the upper troposphere, whereas for five other events the waves terminated in the mesosphere itself. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50–100 km and 150–300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Prevailing conditions at the terminal points for each of the 14 events are provided. As no convection in and around the terminal points is noticed, convection is unlikely to be the source. Interestingly, large (~9 m s−1km−1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10–12 km altitude) and are thus identified to be the source for generating the observed high-phase-speed, high-frequency gravity waves.


2015 ◽  
Vol 33 (12) ◽  
pp. 1479-1484 ◽  
Author(s):  
Y. Tomikawa

Abstract. A new method of obtaining power spectral distribution of gravity waves as a function of ground-based horizontal phase speed and propagation direction from airglow observations has recently been proposed. To explain gravity wave power spectrum anisotropy, a new gravity wave transmission diagram was developed in this study. Gravity wave transmissivity depends on the existence of critical and turning levels for waves that are determined by background horizontal wind distributions. Gravity wave transmission diagrams for different horizontal wavelengths in simple background horizontal winds with constant vertical shear indicate that the effects of the turning level reflection are significant and strongly dependent on the horizontal wavelength.


2005 ◽  
Vol 23 (11) ◽  
pp. 3431-3437 ◽  
Author(s):  
A. N. Oleynikov ◽  
Ch. Jacobi ◽  
D. M. Sosnovchik

Abstract. A procedure of revealing parameters of internal gravity waves from meteor radar wind measurements is presented. The method is based on dividing the measuring volume into different parts and, using wavelet analysis, calculating the phase progression of frequency peaks in the vertical and horizontal direction. Thus, the distribution of vertical and horizontal wavelengths and directions of IGW energy propagation, using meteor radar data, has been obtained. The method was applied to a 4-month data set obtained in July and August, 1998 and 1999. As expected, the majority of waves have been found to propagate upwards, although a considerable number seem to propagate downwards as well. High-frequency (intrinsic periods T* of less than 2 h) waves are dominating. The distribution of waves over the course of an average day is only weakly structured, with weak maxima in the morning and evening.


2021 ◽  
Author(s):  
Robert Vicari

<p>Highly idealized model studies suggest that convectively generated internal gravity waves in the troposphere with horizontal wavelengths on the order of a few kilometers may affect the lifetime, spacing, and depth of clouds and convection. To answer whether such a convection-wave coupling occurs in the real atmosphere, one needs to find corresponding events in observations. In general, the study of high-frequency internal gravity wave-related phenomena in the troposphere is a challenging task because they are usually small-scale and intermittent. To overcome case-by-case studies, it is desirable to have an automatic method to analyze as much data as possible and provide enough independent and diverse evidence.<br>Here, we focus on brightness temperature satellite images, in particular so-called satellite water vapor channels. These channels measure the radiation at wavelengths corresponding to the energy emitted by water vapor and provide cloud-independent observations of internal gravity waves, in contrast to visible and other infrared satellite channels where one relies on the wave impacts on clouds. In addition, since these water vapor channels are sensitive to certain vertical layers in the troposphere, combining the images also reveals some vertical structure of the observed waves.<br>We propose an algorithm based on local Fourier analyses to extract information about high-frequency wave patterns in given brightness temperature images. This method allows automatic detection and analysis of many wave patterns in a given domain at once, resulting in a climatology that provides an initial observational basis for further research. Using data from the instrument ABI on board the satellite GOES-16 during the field campaign EUREC<sup>4</sup>A, we demonstrate the capabilities and limitations of the method. Furthermore, we present the respective climatology of the detected waves and discuss approaches based on this to address the initial question.</p>


2016 ◽  
Author(s):  
Hannes Diedrich ◽  
Falco Wittchen ◽  
René Preusker ◽  
Jürgen Fischer

Abstract. The remote sensing of Total Column Water Vapour (TCWV) from polar orbiting, sun-synchronous satellite spectrometers such as the Medium Resolution Imaging Spectrometer (MERIS) on board of ENVISAT and the Moderate Imaging Spectroradiometer (MODIS) on board of Aqua and Terra enables observations on a high spatial resolution and a high accuracy over land surfaces. The observations serve studies about small scale variations of water vapour as well as the detection of local and global trends. However, depending on the swath width of the sensor, the temporal sampling is low and the observations of TCWV are limited to cloud-free land scenes. This study quantifies the representativeness of a single TCWV observation at the time of the satellite overpass under cloud-free conditions by investigating the diurnal cycle of TCWV using 9 years of a 2-hourly TCWV data set from global GNSS (Global Navigation Satellite Systems) stations. It turns out, that the TCWV observed at 10:30 local time (LT) is generally lower than the daily mean TCWV by 0.65 mm (4 %) on average for cloud-free cases. Averaging over all GNSS stations, the monthly mean TCWV at 10:30 LT, constrained to cases that are cloud-free, is by 5 mm (25 %) lower than the monthly mean TCWV at 10:30 LT of all cases. Additionally, the diurnal variability of TCWV is assessed. For the majority of GNSS stations, the amplitude of the averaged diurnal cycle ranges between 1 % and 5 % of the daily mean with a minimum between 6 LT and 10 LT and maximum between 16 LT and 20 LT. However, a high variability of TCWV on an individual day is detected. On average, the TCWV varies by 15 % around the daily mean.


1981 ◽  
Vol 71 (6) ◽  
pp. 1687-1700
Author(s):  
Keiiti Aki

Abstract In order to separate the scattering effect from the source effect on high-frequency seismic waves, the spectra of S and coda waves are studied simultaneously for 900 small earthquakes (magnitude 3 to 4) in the Kanto region, Japan. The observed S-wave spectrum is the source spectrum modified by the attenuation and forward-scattering effect, while the coda spectrum is the source spectrum modified by the attenuation and back-scattering effect. From previous studies (Aki, 1980a, b) on the same data set, we know about the attenuation effect. Comparing the S-wave spectrum with the coda spectrum, we find that our data are consistent with the source spectrum with corner frequencies 3 to 6 Hz, and high-frequency decay ω−1 to ω−2, and support the hypothesis that scattering is the major cause of attenuation of S waves in the lithosphere, in which the small-scale Rayleigh scattering (Q−1 ∝ f3) applies to frequencies lower than 3 Hz and the large-scale scattering (Q−1 ∝ f0∼−1) to higher frequencies. The high-frequency decay of the source spectrum appears to be somewhat steeper for shallower earthquakes. We found that two areas with significantly different tectonic features shared similar attenuation and source effects, but showed very different envelopes of seismograms due to different forward-scattering effects. The forward-scattering effect may be the most sensitive to the structural difference.


Sign in / Sign up

Export Citation Format

Share Document