scholarly journals Characterizing and correcting the warm bias observed in AMDAR temperature observations

2021 ◽  
Author(s):  
Siebren de Haan ◽  
Paul M. A. de Jong ◽  
Jitze van der Meulen

Abstract. Some aircraft temperature observations, retrieved through the Aircraft Meteorological Data Relay (AMDAR), suffer from a significant warm bias when comparing observations with numerical weather prediction (NWP) model. In this manuscript we show that this warm bias of AMDAR temperature can be characterized and consequently reduced substantially. The characterization of this warm bias is based on the methodology of measuring temperature with a moving sensor and can be split into two separate processes. The first process depends on the flight phase of the aircraft and relates to difference of timing, as it appears that the time of measurement of altitude and temperature differ. When an aircraft is ascending or descending this will result in small bias in temperature due to the (on average) presence of an atmospheric temperature lapse rate. The second process is related to internal corrections applied to pressure altitude without feedback to temperature observation measurement. Based on NWP model temperature data combined with additional information on Mach number and true airspeed, we were able to estimate corrections using an 18 months period from January 2017 to July 2018. Next, the corrections were applied on AMDAR observations over the period from September 2018 to mid-December 2019. Comparing these corrected temperatures with (independent) radiosonde temperature observations demonstrates a reduction of the temperature bias from 0.5 K to around zero and reduction of standard deviation of almost 10 %.

2021 ◽  
Vol 94 (2) ◽  
pp. 237-249
Author(s):  
Martin Novák

The article includes a summary of basic information about the Universal Thermal Climate Index (UTCI) calculation by the numerical weather prediction (NWP) model ALADIN of the Czech Hydrometeorological Institute (CHMI). Examples of operational outputs for weather forecasters in the CHMI are shown in the first part of this work. The second part includes results of a comparison of computed UTCI values by ALADIN for selected place with UTCI values computed from real measured meteorological data from the same place.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 484 ◽  
Author(s):  
Ana Firanj Sremac ◽  
Branislava Lalić ◽  
Milena Marčić ◽  
Ljiljana Dekić

The aim of this research is to present a weather-based forecasting system for apple fire blight (Erwinia amylovora) and downy mildew of grapevine (Plasmopara viticola) under Serbian agroecological conditions and test its efficacy. The weather-based forecasting system contains Numerical Weather Prediction (NWP) model outputs and a disease occurrence model. The weather forecast used is a product of the high-resolution forecast (HRES) atmospheric model by the European Centre for Medium-Range Weather Forecasts (ECMWF). For disease modelling, we selected a biometeorological system for messages on the occurrence of diseases in fruits and vines (BAHUS) because it contains both diseases with well-known and tested algorithms. Several comparisons were made: (1) forecasted variables for the fifth day are compared against measurements from the agrometeorological network at seven locations for three months (March, April, and May) in the period 2012–2018 to determine forecast efficacy; (2) BAHUS runs driven with observed and forecast meteorology were compared to test the impact of forecasted meteorological data; and (3) BAHUS runs were compared with field disease observations to estimate system efficacy in plant disease forecasts. The BAHUS runs with forecasted and observed meteorology were in good agreement. The results obtained encourage further development, with the goal of fully utilizing this weather-based forecasting system.


2016 ◽  
Vol 55 (2) ◽  
pp. 479-491 ◽  
Author(s):  
Sarah M. Griffin ◽  
Kristopher M. Bedka ◽  
Christopher S. Velden

AbstractAssigning accurate heights to convective cloud tops that penetrate into the upper troposphere–lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, “overshooting tops” (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, −7.34 K km−1, for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within ±500 m of the coincident CPR-estimated heights.


2021 ◽  
Author(s):  
Vicent Favà ◽  
Juan José Curto ◽  
Alba Gilabert

Abstract. In the early part of the 20th century, tracking a pilot balloon from the ground with an optical theodolite was one of the few methods that was able to provide information from the upper air. One of the most significant sources of error with this method, however, was involved in calculating the balloon height as a function of time, a calculation dependent on the ascent rate which was traditionally taken to be constant. This study presents a new thermodynamic model which allows us to compute the thermal jump between the surrounding environment and the lifting gas as a function of different parameters such as the atmospheric temperature lapse rate or the physical characteristics of the balloon. The size of the thermal jump and its effect on the ascent rate is discussed for a 30 g pilot balloon, which was the type used at the Ebro Observatory (EO) between 1952 and 1963. The meridional and zonal components of the wind profile from ground level up to 10 km altitude were computed by applying the model using EO digitized data for a sample of this period. The obtained results correlate very well with those obtained from the ERA5 reanalysis. A very small thermal jump with a weak effect on the computed ascent rate was found. This ascent rate is consistent with the values assigned in that period to the balloons filled with hydrogen used at the Ebro Observatory and to the 30 g balloons filled with helium used by the US National Weather Service.


2013 ◽  
Vol 54 (63) ◽  
pp. 311-321 ◽  
Author(s):  
Martin Heynen ◽  
Francesca Pellicciotti ◽  
Marco Carenzo

AbstractWe investigate the sensitivity of a distributed enhanced temperature-index (ETI) melt model, in order to understand which parameters have the largest influence on model outputs and thus need to be accurately known. We use melt and meteorological data from two Alpine glaciers and one glacier in the Andes of Chile. Sensitivity analysis is conducted in a systematic way in terms of parameters and the different conditions (day, night, clear-sky, overcast), melt seasons and glaciers examined. The sensitivity of total melt to changes in individual parameters is calculated using a local method around the optimal value of the parameters. We verify that the parameters are optimal at the distributed scale and assess the model uncertainty induced by uncertainty in the parameters using a Monte Carlo technique. Model sensitivity to parameters is consistent across melt seasons, glaciers, different conditions and the daily statistics examined. The parameters to which the model is most sensitive are the shortwave-radiation factor, the temperature lapse rate for extrapolation of air temperature, the albedo parameters, the temperature threshold and the cloud transmittance factor parameters. A parameter uncertainty of 5% results in a model uncertainty of 5.6% of mean melt on Haut Glacier d’Arolla, Switzerland.


1956 ◽  
Vol 37 (7) ◽  
pp. 342-350 ◽  
Author(s):  
Albert D. Anderson ◽  
Henry J. Mastenbrook

A new concept of upper-air data collection utilizes instrumented balloons controlled to float along given constant-pressure surfaces in the atmosphere. A system of instrumentation, named the transosonde (trans-oceanic-sonde) has been developed for implementing this concept. Field tests have established the technical and meteorological feasibility of the system. In the course of the tests, transosonde balloons were tracked over distances of thousands of miles using a network of shore-based high-frequency radio-direction-finder stations. Emphasis has been placed upon the trajectory of the balloon as the primary source of meteorological data. Wind velocities and accelerations can be derived directly from constant-pressure surface trajectories, providing valuable synoptic and research data. Balloon trajectories in passing through major troughs and ridges define these features, giving information of importance for synoptic analysis and long-range forecasting. In addition, a sequence of trajectories provides a measure of the acceleration and deceleration of these entities. The transosonde system has additional data-gathering potentials for temperature, lapse rate, wind shear and other parameters. It is concluded that the system can be employed over those regions of the globe where upper-air data are lacking at a cost competitive with present-day systems.


FLORESTA ◽  
2011 ◽  
Vol 41 (3) ◽  
Author(s):  
Christopher Thomas Blum ◽  
Carlos Vellozo Roderjan ◽  
Franklin Galvão

O estudo teve como objetivo caracterizar aspectos climáticos, com enfoque na temperatura e umidade relativa do ar e sua influência sobre a distribuição da vegetação numa encosta da Serra da Prata, Morretes, Paraná, coberta pelas formações Submontana e Montana da Floresta Ombrófila Densa. Entre julho de 2009 e junho de 2010 foram obtidos dados meteorológicos, aos 400 e 1.000 m s.n.m. As temperaturas médias no período foram 19,0 ºC (400 m) e 16,3 ºC (1.000 m). A taxa de redução térmica com a elevação altitudinal foi 0,44 ºC/100 m. Detectou-se uma região de transição climática em torno dos 700 m de altitude, com o clima Cfb acima e o Cfa abaixo. A isoterma da temperatura média de 13 ºC no mês mais frio, estimada para a região dos 800 m s.n.m., coincide com o limite inferior de ocorrência da formação Montana, denotando a influência das baixas temperaturas na diferenciação da vegetação. As médias de umidade relativa do ar foram elevadas, devido ao constante aporte das massas de ar úmido oriundas do oceano. As médias das amplitudes diárias de temperatura e umidade foram muito semelhantes para as duas altitudes, demonstrando que a variação altitudinal parece não exercer influência sobre suas variações diárias na encosta estudada.Palavras-chave:  Gradiente altitudinal; Serra do Mar; Floresta Atlântica; temperatura; umidade relativa do ar. AbstractClimate and his influence over the Atlantic Dense Rainforest distribution in the Prata Mountain Range, Morretes, Paraná, South Brazil. This study aimed to characterize climatic aspects, focusing air temperature and relative humidity, as well as its influence to vegetation distribution in a slope of Prata Mountain Range, Morretes, Paraná, covered by Submontane and Montane formations of the Atlantic Rainforest. Between July of 2009 and June of 2010 meteorological data was collected, at 400 and 1,000 m a.s.l. The average temperature along this period was 19.0 ºC (400 m) and 16.3 ºC (1,000 m). The temperature lapse rate was 0.44 ºC/100 m. It was detected a climatic transition region at about 700 m a.s.l., with the Cfb type above, and the Cfa type below. The isotherm of the average temperature of 13 ºC in the coldest month, estimated for the region of about 800 m a.s.l., agrees with the inferior limit of the Montane formation, denoting influence of low temperatures in the vegetation distinction. The air relative humidity average was high, because the regular arrival of moist air masses from the ocean. The average of daily amplitude of temperature and relative humidity were very similar for both studied altitudes, denoting not apparent influence of the altitudinal variation to the daily variation of these climatic variables in the slope.Keywords:              Altitudinal gradient; Serra do Mar; Atlantic Ombrophilous Dense Forest; temperature; air relative humidity.


2013 ◽  
Vol 8 (3) ◽  
pp. 297-305

In order to accurately predict the pollutant concentrations and the plume trajectory in the atmosphere, it is necessary to take into account the effects of interactions between the plume and the surrounding environment. In fact, the atmospheric conditions have a lot of influence on the plume behavior. Earlier models were based on statistical approach. However, this approach presents many shortcomings, in that way they are unable to take directly into account some atmospheric properties such as the moisture of the air. A complete model is the one that solves the entire set of momentum equation completed by energy and species equations. A number of approximate predictive methods for the plume flow in stratified surroundings have been developed in the literature such as Abraham (1965), Schwartz and Tulin (1972), Sneck and Brown (1974), Wright (1984) and Hwang and Chiang (1986). In this work, we use the lagrangian concept based on the so-called projected area entrainment in its latest formulation (Lee and Cheung 1990) to predict the effect of relative humidity on the plume behavior. Input-required data include source parameters such as the gas exhaust conditions (temperature release, exit velocity, mixing ratios), physical dimensions (diameter and height of stack) and meteorological data. In the present work, only idealized meteorological conditions which neglect the vertical variation of the wind speed, the temperature lapse rate and the relative humidity are considered. The output of the model gives an idea on characteristics parameters of the plume such as its trajectory, its temperature and mixing ratio distribution and its length of visibility. The model validation is accomplished through a comparison of the computed plume maximum height with results obtained using empirical formulas (Hanna, 1972). Also, the calculated plume visibility length is confronted to the ADMS results obtained by Carruthers et al. (2000). The effect of relative humidity is then investigated.


2018 ◽  
Vol 57 (3) ◽  
pp. 645-657 ◽  
Author(s):  
Helen N. Webster ◽  
Thomas Whitehead ◽  
David J. Thomson

AbstractIn atmospheric dispersion models driven by meteorological data from numerical weather prediction (NWP) models, it is necessary to include a parameterization for plume spread that is due to unresolved mesoscale motions. These are motions that are not resolved by the input NWP data but are larger in size than the three-dimensional turbulent motions represented by turbulence parameterizations. Neglecting the effect of these quasi-two-dimensional unresolved mesoscale motions has been shown to lead to underprediction of plume spread and overprediction of concentrations within the plume. NWP modeling is conducted at a range of resolutions that resolve different scales of motion. This suggests that any parameterization of unresolved mesoscale motions should depend on the resolution of the input NWP data. Spectral analysis of NWP data and wind observations is used to assess the mesoscale motions unresolved by the NWP model. Appropriate velocity variances and Lagrangian time scales for these motions are found by calculating the missing variance in the energy spectra and analyzing correlation functions. A strong dependence on the resolution of the NWP data is seen, resulting in larger velocity variances and Lagrangian time scales from the lower-resolution models. A parameterization of unresolved mesoscale motions on the basis of the NWP resolution is proposed.


2016 ◽  
Author(s):  
P.M. Langebroek ◽  
K.H. Nisancioglu

Abstract. During the last interglacial period (LIG, ~ 130–115 ka before present, ka = 1000 yr) summer temperatures over Greenland were several degrees higher than today. It is likely that the Greenland ice sheet (GIS) was smaller than today, contributing to the reconstructed sea-level highstand of the LIG. However, the range of simulated GIS melt is large, and the location of the melt is uncertain. Here, we use temperature and precipitation patterns simulated by the Norwegian Earth System Model (NorESM) to investigate the volume, extent and stability of the GIS during the LIG. Present-day observations of ice sheet size, elevation and stability, together with paleo elevation information from five deep ice cores, are used to evaluate our ensemble of GIS simulations. Accepted simulations indicate a maximum GIS reduction equivalent to a global mean sea-level rise of 0.8–2.2 m compared to today, with most of the melt occurring in the southwest. The timing of the maximum ice melt over Greenland is simulated between 124 and 122 ka. We furthermore suggest a preferred mean value for the basal sliding parameter, relatively high PDD factors and an average to high atmospheric temperature lapse rate based on training the SICOPOLIS ice sheet model to observations and available LIG proxy data.


Sign in / Sign up

Export Citation Format

Share Document