scholarly journals On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind

2021 ◽  
Author(s):  
Isabell Krisch ◽  
Neil P. Hindley ◽  
Oliver Reitebuch ◽  
Corwin J. Wright

Abstract. Since its launch in 2018, the European Space Agency’s Earth Explorer satellite Aeolus has provided global height resolved measurements of horizontal wind in the troposphere and lower stratosphere for the first time. Novel datasets such as these provide an unprecedented opportunity for the research of atmospheric dynamics and provide new insights into the dynamics of the upper troposphere and lower stratosphere (UTLS) region. Aeolus measures the wind component along its horizontal line-of-sight, but for the analysis and interpretation of atmospheric dynamics, zonal and/or meridional wind components are most useful. In this paper, we introduce and compare three different methods to derive zonal and meridional wind components from the Aeolus wind measurements. We find that the most promising method involves combining Aeolus measurements during ascending and descending orbits. Using this method, we derive global estimates of the zonal wind in the latitude range 79.7° S to 84.5° N with errors of less than 5 ms−1 (at the 2-sigma level). Due to the orbit geometry of Aeolus, the estimation of meridional wind in the tropics and at midlatitudes is more challenging and the quality is less reliable. However, we find that it is possible to derive meridional winds poleward of 70° latitude with absolute errors typically below ±5 ms−1 (at the 2-sigma level). This further demonstrate the value of Aeolus wind measurements for applications in weather and climate research, in addition to their important role in numerical weather prediction.

2018 ◽  
Author(s):  
Philippe Baron ◽  
Donal Murtagh ◽  
Patrick Eriksson ◽  
Jana Mendrok ◽  
Satoshi Ochiai ◽  
...  

Abstract. Stratospheric Inferred Winds (SIW) is a Swedish mini sub-millimeter limb sounder selected for the 2nd InnoSat platform launch planned near 2022. It is intended to fill the altitude gap between 30–70 km in atmospheric wind measurements and also aims at pursuing the limb observations of temperature and key atmospheric constituents between 10–90 km when current satellite missions are probably stopped. Line-of-sight winds are retrieved from the Doppler shift of the emission lines introduced by 5 the wind field. Observations will be performed with two antennas pointing toward the limb with perpendicular directions to reconstruct the 2-D horizontal wind vector. Each antenna has a vertical field of view of 5 km. The chosen spectral band near 655 GHz contains a dense group of strong O3 lines suitable for exploiting the small wind information in stratospheric spectra. Using both sidebands of the heterodyne receiver, a large number of chemical species will be measured including O3-isopotologues, H2O, HDO, HCl, ClO, N2O, HNO3, NO, NO2, HCN, CH3CN and HO2. This paper presents the simulation study for assessing the measurement performances. The line-of-sight winds are retrieved between 30–90 km with the best sensitivity between 35–70 km where the precision (1-sigma) is 5–10 m s−1 for a single scan. Similar performances can be obtained during day and night conditions except in the lower mesosphere where the photo-dissociation of O3 in day-time reduces the sensitivity by 50 % near 70 km. Profiles of O3, H2O and temperature are retrieved with a high precision up to 50 km (


2017 ◽  
Vol 35 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Shao Dong Zhang ◽  
Chun Ming Huang ◽  
Kai Ming Huang ◽  
Ye Hui Zhang ◽  
Yun Gong ◽  
...  

Abstract. By applying 12-year (1998–2009) radiosonde data over a midlatitude station, we studied the vertical wavenumber spectra of three-dimensional wind fluctuations. The horizontal wind spectra in the lower stratosphere coincide well with the well-known universal spectra, with mean spectral slopes of −2.91 ± 0.09 and −2.99 ± 0.09 for the zonal and meridional wind spectra, respectively, while the mean slopes in the troposphere are −2.64 ± 0.07 and −2.70  ±  0.06, respectively, which are systematically less negative than the canonical slope of −3. In both the troposphere and lower stratosphere, the spectral amplitudes (slopes) of the horizontal wind spectra are larger (less negative) in winter, and they are larger (less negative) in the troposphere than in the lower stratosphere. Moreover, we present the first statistical results of vertical wind fluctuation spectra, which revealed a very shallow spectral structure, with mean slopes of −0.58 ± 0.06 and −0.23 ± 0.05 in the troposphere and lower stratosphere, respectively. Such a shallow vertical wind fluctuation spectrum is considerably robust. Different from the horizontal wind spectrum, the slopes of the vertical wind spectra in both the troposphere and lower stratosphere are less negative in summer. The height variation of vertical wind spectrum amplitude is also different from that of the horizontal wind spectrum, with a larger amplitude in the lower stratosphere. These evident differences between the horizontal and vertical wind spectra strongly suggest they should obey different spectral laws. Quantitative comparisons with various theoretical models show that no existing spectral theories can comprehensively explain the observed three-dimensional wind spectra, indicating that the spectral features of atmospheric fluctuations are far from fully understood.


2011 ◽  
Vol 63-64 ◽  
pp. 519-522 ◽  
Author(s):  
Wei Li ◽  
Hao Ge Ma ◽  
Zhi Wei Cai

By analysing the wind data observed by radiosonde during 2000-2002 in Wuhan, zonal and meridional wind velocity, wind shear and energy were discussed. A winter maximum and a summer minimum of the zonal wind velocity which pace up and down between the height of 10-15km was found. The weaker variation of the meridional wind reflects the seasonal variation of gravity wave activity in the lower atmosphere. The energy variation show a trend stronger in winter and spring then in other seasons. A winter maximum and a summer minimum in the troposphere and lower stratosphere was also found, which ranged in similar height range as wind velocity. As a result, a strong correlation between horizontal wind velocity and kinetic energy can be infered.


2018 ◽  
Vol 11 (7) ◽  
pp. 4545-4566 ◽  
Author(s):  
Philippe Baron ◽  
Donal Murtagh ◽  
Patrick Eriksson ◽  
Jana Mendrok ◽  
Satoshi Ochiai ◽  
...  

Abstract. Stratospheric Inferred Winds (SIW) is a Swedish mini sub-millimeter limb sounder selected for the 2nd InnoSat platform, with launch planned for around 2022. It is intended to fill the altitude gap between 30 and 70 km in atmospheric wind measurements and also aims at pursuing the limb observations of temperature and key atmospheric constituents between 10 and 90 km when current satellite missions will probably come to an end. Line-of-sight winds are retrieved from the Doppler shift of molecular emission lines introduced by the wind field. Observations will be performed with two antennas pointing toward the limb in perpendicular directions in order to reconstruct the 2-D horizontal wind vector. Each antenna has a vertical field of view (FOV) of 5 km. The chosen spectral band, near 655 GHz, contains a dense group of strong O3 lines suitable for exploiting the small amount of wind information in stratospheric spectra. Using both sidebands of the heterodyne receiver, a large number of chemical species will be measured, including O3 isotopologues, H2O, HDO, HCl, ClO, N2O, HNO3, NO, NO2, HCN, CH3CN and HO2. This paper presents a simulation study that assesses measurement performance. The line-of-sight winds are retrieved between 30 and 90 km with the best sensitivity between 35 and 70 km, where the precision (1σ) is 5–10 m s−1 for a single scan. Similar performance can be obtained during day and night conditions except in the lower mesosphere, where the photo-dissociation of O3 in daytime reduces the sensitivity by 50 % near 70 km. Profiles of O3, H2O and temperature are retrieved with high precision up to 50 km ( < 1 %,  < 2 %, 1 K, respectively). Systematic errors due to uncertainties in spectroscopic parameters, in the radiometer sideband ratio and in the radiance calibration process are investigated. A large wind retrieval bias of 10–30 m s−1 between 30 and 40 km could be induced by the air-broadening parameter uncertainties of O3 lines. This highlights the need for good knowledge of these parameters and for studying methods to mitigate the retrieval bias.


2017 ◽  
Vol 74 (6) ◽  
pp. 2065-2080 ◽  
Author(s):  
Fabrice Duruisseau ◽  
Nathalie Huret ◽  
Alice Andral ◽  
Claude Camy-Peyret

Abstract This study focuses on the ability of ERA-Interim to represent wind variability in the middle atmosphere. The originality of the proposed approach is that wind measurements are deduced from the trajectories of zero-pressure balloons that can reach high-stratospheric altitudes. These balloons are mainly used to carry large scientific payloads. The trajectories of balloons launched above Esrange, Sweden, and Teresina, Brazil, from 2000 to 2011 were used to deduce zonal and meridional wind components (by considering the balloon as a perfect tracer at high altitude). Collected data cover several dynamical conditions associated with the winter and summer polar seasons and west and east phases of the quasi-biennial oscillation at the equator. Systematic comparisons between measurements and ERA-Interim data were performed for the two horizontal wind components, as well as wind speed and wind direction in the [100, 2]-hPa pressure range to deduce biases between the model and balloon measurements as a function of altitude. Results show that whatever the location and the geophysical conditions considered, biases between ERA-Interim and balloon wind measurements increase as a function of altitude. The standard deviation of the model–observation wind differences can attain more than 5 m s−1 at high altitude (pressure P &lt; 20 hPa). A systematic ERA-Interim underestimation of the wind speed is observed and large biases are highlighted, especially for equatorial flights.


2012 ◽  
Vol 5 (3) ◽  
pp. 4123-4156 ◽  
Author(s):  
J. Hildebrand ◽  
G. Baumgarten ◽  
J. Fiedler ◽  
U.-P. Hoppe ◽  
B. Kaifler ◽  
...  

Abstract. During a joint campaign in January 2009 the Rayleigh/Mie/Raman (RMR) lidar and the sodium lidar at the ALOMAR Observatory (69° N, 16° E) in Northern Norway were operated simultaneously for more than 40 h, collecting data for wind measurements in the middle atmosphere from 30 up to 110 km altitude. At the upper (lower) altitude range where the RMR (sodium) lidar can operate, both lidars probe the same sounding volume, allowing to compare the derived wind speeds. We present the first simultaneous common volume wind measurements in the middle atmosphere using two different lidar instruments. The comparison of winds derived by RMR and sodium lidar is excellent for long integration times of 10 h as well as shorter ones of 1 h. Combination of data from both lidars allows identifying wavy structures between 30 and 110 km altitude, whose amplitudes increase with height. We have also performed lidar measurements of the same wind component using two independent branches of the RMR lidar and found a good agreement of the results but also identified inhomogeneities in the horizontal wind at about 55 km altitude of up to 20 ms−1. Such small scale inhomogeneities in the horizontal wind field are an essential challenge when comparing data from different instruments.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1284
Author(s):  
Zhao-Yu Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su

Concurrent measurements of three-dimensional wind velocities made with three co-located wind profilers operated at frequencies of 52 MHz, 449 MHz, and 1.29 GHz for the period 12–16 September 2017 are compared for the first time in this study. The velocity–azimuth display (VAD) method is employed to estimate the wind velocities. The result shows that, in the absence of precipitation, the root mean square difference (RMSD) in the horizontal wind speed velocities U and wind directions D between different pairs of wind profilers are, respectively, in the range of 0.94–0.99 ms−1 and 7.7–8.3°, and those of zonal wind component u and meridional wind component v are in the respective ranges of 0.91–1.02 ms−1 and 1.1–1.24 ms−1. However, the RMSDs between wind profilers and rawinsonde are in the range of 2.89–3.26 ms−1 for horizontal wind speed velocity and 11.17–14.48° for the wind direction, which are around 2–3 factors greater than those between the wind profilers on average. In addition to the RMSDs, MDs between wind profilers and radiosonde are around one order of magnitude larger than those between wind profilers. These results show that the RMSDs, MDs, and Stdds between radars are highly consistent with each other, and they are much smaller than those between radar and rawinsonde. This therefore suggests that the wind profiler-measured horizontal wind velocities are much more reliable, precise, and accurate than the rawinsonde measurement.


2021 ◽  
Author(s):  
Susanna Hagelin ◽  
Roohollah Azad ◽  
Magnus Lindskog ◽  
Harald Schyberg ◽  
Heiner Körnich

Abstract. The impact of using wind speed data from the Aeolus satellite in a limited area Numerical Weather Prediction (NWP) system is being investigated using the limited area NWP model Harmonie-Arome over the Nordic region. We assimilate the Horizontal Line of Sight (HLOS) winds observed by Aeolus using 3D-Var data assimilation for two different periods, one in Sept–Oct 2018 when the satellite was recently launched, and a later period in Apr–May 2020 to investigate the updated data processing of the HLOS winds. We find that the quality of the Aeolus observations have degraded between the first and second experiment period over our domain. However observations from Aeolus, in particular the Mie winds, have a clear impact on the analysis of the NWP model for both periods whereas the forecast impact is neutral when compared against radiosondes. Results from evaluation of observation minus background and observation minus analysis departures based on Desroziers diagnostics show that the observation error should be increased for Aeolus data in our experiments, but the impact of doing so is small. We also see that there is potential improvement in using 4D-Var data assimilation, which generate flow-dependent analysis increments, with the Aeolus data.


2012 ◽  
Vol 5 (10) ◽  
pp. 2433-2445 ◽  
Author(s):  
J. Hildebrand ◽  
G. Baumgarten ◽  
J. Fiedler ◽  
U.-P. Hoppe ◽  
B. Kaifler ◽  
...  

Abstract. During a joint campaign in January 2009, the Rayleigh/Mie/Raman (RMR) lidar and the sodium lidar at the ALOMAR Observatory (69° N, 16° E) in Northern Norway were operated simultaneously for more than 40 h, collecting data for wind measurements in the middle atmosphere from 30 up to 110 km altitude. As both lidars share the same receiving telescopes, the upper altitude range of the RMR lidar and the lower altitude range of the sodium lidar overlap in the altitude region of ≈80–85 km. For this overlap region we are thus able to present the first simultaneous wind measurements derived from two different lidar instruments. The comparison of winds derived by RMR and sodium lidar is excellent for long integration times of 10 h as well as shorter ones of 1 h. Combination of data from both lidars allows identifying wavy structures between 30 and 110 km altitude, whose amplitudes increase with height. We have also performed vertical wind measurements and measurements of the same horizontal wind component using two independent lasers and telescopes of the RMR lidar and show how to use this data to calibrate and validate the wind retrieval. For the latter configuration we found a good agreement of the results but also identified inhomogeneities in the horizontal wind at about 55 km altitude of up to 20 ms−1 for an integration time of nearly 4 h. Such small-scale inhomogeneities in the horizontal wind field are an essential challenge when comparing data from different instruments.


2021 ◽  
Author(s):  
Michael P. Rennie ◽  
Lars Isaksen

&lt;p&gt;The latest results on the assessment of the impact of Aeolus Level-2B horizontal line-of-sight wind retrievals in global Numerical Weather Prediction at ECMWF will be presented. &amp;#160;Aeolus has been operationally assimilated at ECMWF since 9 January 2020.&lt;br&gt;Random and systematic error estimates were derived from observation minus background departure statistics. &amp;#160;The HLOS wind random error standard deviation is estimated to vary over the range 4.0-7.0 m/s for the Rayleigh-clear and 2.8-3.6 m/s for the Mie-cloudy; depending on atmospheric signal levels which in turn depends on instrument performance, atmospheric backscatter properties and the processing algorithms.&lt;br&gt;In Observing System Experiments (OSEs) Aeolus provides statistically significant improvement in short-range forecasts as verified by observations sensitive to temperature, wind and humidity. &amp;#160;Longer forecast range verification shows positive impact that is strongest at the 2-3 day forecast range; ~2% improvement in root mean square error for vector wind and temperature in the tropical upper troposphere and lower stratosphere and polar troposphere. &amp;#160;Positive impact up to 9 days is found in the tropical lower stratosphere. &amp;#160;Both Rayleigh-clear and Mie-cloudy winds provide positive impact, but the Rayleigh accounts for most tropical impact. The Forecast Sensitivity Observation Impact (FSOI) metric is available since Aeolus was operationally assimilated, which confirms Aeolus is a useful contribution to the global observing system; with the Rayleigh-clear and Mie-cloudy winds providing similar overall short-range impact in 2020. &amp;#160;If the OSEs are ready in time, we will present the impact of the first reprocessed Aeolus data for the July-December 2019 period.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document