scholarly journals An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation

2011 ◽  
Vol 4 (9) ◽  
pp. 1965-1977 ◽  
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
U. Foelsche ◽  
L. Haimberger ◽  
C. Tavolato ◽  
...  

Abstract. Uncertainties for upper-air trend patterns are still substantial. Observations from the radio occultation (RO) technique offer new opportunities to assess the existing observational records there. Long-term time series are available from radiosondes and from the (Advanced) Microwave Sounding Unit (A)MSU. None of them were originally intended to deliver data for climate applications. Demanding intercalibration and homogenization procedures are required to account for changes in instrumentation and observation techniques. In this comparative study three (A)MSU anomaly time series and two homogenized radiosonde records are compared to RO data from the CHAMP, SAC-C, GRACE-A and F3C missions for September 2001 to December 2010. Differences of monthly anomalies are examined to assess the differences in the datasets due to structural uncertainties. The difference of anomalies of the (A)MSU datasets relative to RO shows a statistically significant trend within about (−0.2±0.1) K/10 yr (95% confidence interval) at all latitudes. This signals a systematic deviation of the two datasets over time. The radiosonde network has known deficiencies in its global coverage, with sparse representation of most of the southern hemisphere, the tropics and the oceans. In this study the error that results from sparse sampling is estimated and accounted for by subtracting it from radiosonde and RO datasets. Surprisingly the sampling error correction is also important in the Northern Hemisphere (NH), where the radiosonde network is dense over the continents but does not capture large atmospheric variations in NH winter. Considering the sampling error, the consistency of radiosonde and RO anomalies is improving substantially; the trend in the anomaly differences is generally very small. Regarding (A)MSU, its poor vertical resolution poses another problem by missing important features of the vertical atmospheric structure. This points to the advantage of homogeneously distributed measurements with high vertical resolution.

2011 ◽  
Vol 4 (2) ◽  
pp. 2127-2159 ◽  
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
U. Foelsche ◽  
L. Haimberger ◽  
C. Tavolato ◽  
...  

Abstract. Uncertainties for upper-air trend patterns are still substantial. Observations from the radio occultation (RO) technique offer new opportunities to assess the existing observational records there. Long-term time series are available from radiosondes and from the (Advanced) Microwave Sounding Unit (A)MSU. None of them were originally intended to deliver data for climate applications. Demanding intercalibration and homogenization procedures are required to account for changes in instrumentation and observation techniques. In this comparative study three (A)MSU anomaly time series and two homogenized radiosonde records are compared to RO data from the CHAMP, SAC-C, GRACE-A and F3C missions for September 2001 to December 2009. Differences of monthly anomalies are examined to assess the differences in the datasets due to structural uncertainties. The difference of anomalies of the (A)MSU datasets relative to RO shows a statistically significant trend of about (−0.2 ± 0.05) K at all latitudes. This signals a divergence of the two datasets over time. The radiosonde network has known deficiencies in its global coverage, with sparse representation of most of the Southern Hemisphere, the tropics and the oceans. In this study the error that results from sparse sampling is estimated and accounted for by subtracting it from radiosonde and RO datasets. Surprisingly the sampling error correction is also important in the Northern Hemisphere (NH), where the radiosonde network is dense over the continents but does not capture large atmospheric variations in NH winter. Considering the sampling error, the consistency of radiosonde and RO anomalies is improving substantially; there is no significant trend in the anomaly differences at global scale and in the NH. Regarding (A)MSU, its poor vertical resolution poses another problem by missing important features of the vertical atmospheric structure. This demonstrates the advantage of homogeneously distributed measurements with high vertical resolution.


2009 ◽  
Vol 9 (6) ◽  
pp. 25409-25441 ◽  
Author(s):  
F. Xie ◽  
D. L. Wu ◽  
C. O. Ao ◽  
A. J. Mannucci

Abstract. Diurnal and semi-diurnal variations, driven by solar forcing, are two fundamental modes in the Earth's weather and climate system. Radio occultation (RO) measurements from the six COSMIC satellites (Constellation Observing System for Meteorology Ionosphere and Climate) provide rather uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal and semi-diurnal variations of both temperature and refractivity from two-year (2007–2008) COSMIC RO measurements in the troposphere and stratosphere. The RO observations reveal both propagating and trapped vertical structures of diurnal and semi-diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity decreases with altitude from a local maximum in the planetary boundary layer and reaches the minimum around 14 km and then further increase amplitude in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from upper troposphere to the stratopause with a vertical wavelength of about 25 km. Below 500 hPa (~5.5 km), seasonal variations of the peak diurnal amplitude in the tropics follow the solor forcing change in latitude, while at 30 km the seasonal pattern reverses with the diurnal amplitude peaking at the opposite side of the equator relative to the solar forcing. Polar regions shows large diurnal variations in the stratosphere with strong seasonal variations and the cause(s) of these variations require further investigations.


2018 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Stefan Lossow ◽  
Gabriele P. Stiller ◽  
Karen H. Rosenlof ◽  
Joachim Urban ◽  
...  

Abstract. Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies addressing e.g stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°–70° S), the tropics (15° S–15° N) and the northern hemisphere mid-latitudes (50° N–60° N) at four different altitudes (0.1, 3, 10 and 80 hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed considering the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratio among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that all data sets can be considered in the future in observational and modelling studies addressing e.g. stratospheric and lower mesospheric water vapour variability and trends when data set specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.


2022 ◽  
Author(s):  
Zekai Sen

Abstract To meet the basic assumption of classical Mann-Kendall (MK) trend analysis, which requires serially independent time series, a pre-whitening (PW) procedure is proposed to alleviate the serial correlation structure of a given hydro-meteorological time series records for application. The procedure is simply to take the lagged differences in a given time series in the hope that the new time series will have an independent serial correlation coefficient. The whole idea was originally based on the first-order autoregressive AR (1) process, but such a procedure has been documented to damage the trend component in the original time series. On the other hand, the over-whitening procedure (OW) proposes a white noise process superposition of the same length with zero mean and some standard deviation on the original time series to convert it into serially independent series without any damage to the trend component. The stationary white noise addition does not have any trend components. For trend identification, annual average temperature records in New Jersey and Istanbul are presented to show the difference between PW and OW procedures. It turned out that the OW procedure was superior to the PW procedure, which did not cause a loss in the original trend component.


Author(s):  
Aodhan J Sweeney ◽  
Qiang Fu

AbstractAn observationally-based global climatology of the temperature diurnal cycle in the lower stratosphere is derived from eleven different satellites with Global Positioning System-Radio Occultation (GPS-RO) measurements from 2006-2020. Methods used in our analysis allow for accurate characterization of global stratospheric temperature diurnal cycles, even in the high latitudes where the diurnal signal is small but longer timescale variability is large. A climatology of the synthetic Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) Temperature in the Lower Stratosphere (TLS) is presented to assess the accuracy of diurnal cycle climatologies for the MSU and AMSU TLS observations, which have traditionally been generated by model data. The TLS diurnal temperature ranges are typically less than 0.4 K in all latitude bands and seasons investigated. It is shown that the diurnal range (maximum minus minimum temperature) of TLS is largest over southern hemisphere tropical land in the boreal winter season, indicating the important role of deep convection. The range, phase, and seasonality of the TLS diurnal cycle are generally well captured by the WACCM6 simulation and ERA5 reanalysis. We also present an observationally-based diurnal cycle climatology of temperature profiles from 300-10 hPa for various latitude bands and seasons and compare the ERA5 reanalysis with the observations.


2018 ◽  
Vol 11 (7) ◽  
pp. 4435-4463 ◽  
Author(s):  
Farahnaz Khosrawi ◽  
Stefan Lossow ◽  
Gabriele P. Stiller ◽  
Karen H. Rosenlof ◽  
Joachim Urban ◽  
...  

Abstract. Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80∘–70∘ S), the tropics (15∘ S–15∘ N) and the Northern Hemisphere mid-latitudes (50∘–60∘ N) at four different altitudes (0.1, 3, 10 and 80 hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986–2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.


2017 ◽  
Vol 10 (3) ◽  
pp. 1093-1110 ◽  
Author(s):  
Therese Rieckh ◽  
Richard Anthes ◽  
William Randel ◽  
Shu-Peng Ho ◽  
Ulrich Foelsche

Abstract. We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific during the 6-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing whether the RO method is capable of detecting these extremely dry layers and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical-resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA and GFS data sets, giving confidence to the reanalyses and their use in diagnosing the full four-dimensional structure of the dry layers.


2009 ◽  
Vol 66 (8) ◽  
pp. 2402-2417 ◽  
Author(s):  
L. J. Gray ◽  
S. T. Rumbold ◽  
K. P. Shine

Abstract The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.


2011 ◽  
Vol 4 (2) ◽  
pp. 1593-1615 ◽  
Author(s):  
U. Foelsche ◽  
B. Scherllin-Pirscher ◽  
F. Ladstädter ◽  
A. K. Steiner ◽  
G. Kirchengast

Abstract. Data consistency is an important prerequisite to build radio occultation (RO) climatologies based on a combined record of data from different satellites. The presence of multiple RO receiving satellites in orbit over the same time period allows for testing this consistency. We used RO data from CHAMP (CHAllenging Minisatellite Payload for geoscientific research), six FORMOSAT-3/COSMIC satellites (Formosa Satellite Mission 3/Constellation Observing System for Meteorology, Ionosphere and Climate, F3C), and GRACE-A (Gravity Recovery and Climate Experiment). We show latitude-altitude-resolved results for an example month (October 2007) and the temporal evolution of differences in a climate record of global and monthly means from January 2007 to December 2009. Latitude- and altitude-resolved refractivity and dry temperature climatologies clearly show the influence of different sampling characteristics; monthly mean deviations from the multi-satellite mean over the altitude domain 10 km to 30 km typically reach 0.1% and 0.2 K, respectively. Nevertheless, the 3-year average deviations (shorter for CHAMP) are less than 0.03% and 0.05 K, respectively. We find no indications for instrument degradation, instationarities in the RO records, or temporal trends in sampling patterns. Based on analysis fields from ECMWF (European Centre for Medium-Range Weather Forecasts), we can estimate – and subtract – the sampling error from each monthly climatology. After such subtraction, refractivity deviations are found reduced to <0.05% in almost any month and dry temperature deviations to <0.05 K (<0.02% relative) for almost every satellite and month. 3-year average deviations are even reduced to <0.01% and <0.01 K (CHAMP: −0.05 K), respectively, establishing an amazing consistency of RO climatologies from different satellites. If applying the same processing scheme for all data, refractivity and dry temperature records from individual satellites with similar bending angle noise can be safely combined up to 30 km altitude (refractivity also up to 35 km) to a consistent single climate record of substantial value for climate monitoring in the upper troposphere and lower stratosphere.


Sign in / Sign up

Export Citation Format

Share Document