scholarly journals Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

2015 ◽  
Vol 8 (12) ◽  
pp. 5039-5062 ◽  
Author(s):  
T. Verhoelst ◽  
J. Granville ◽  
F. Hendrick ◽  
U. Köhler ◽  
C. Lerot ◽  
...  

Abstract. Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith–sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-)DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the comparisons with ZSL-DOAS instruments at high latitudes, especially in the presence of a polar vortex due to the strong TOC gradient it induces. At tropical latitudes, where TOC variability is lower, both types of errors remain below about 1 % and consequently do not contribute significantly to the comparison error budget. The detailed analysis of the comparison results, including the metrological errors, suggests that the published random measurement uncertainties for GODFITv3 reprocessed satellite data are potentially overestimated, and adjustments are proposed here. This successful application of the OSSSMOSE system to close for the first time the error budget of TOC comparisons, bodes well for potential future applications, which are briefly touched upon.

2015 ◽  
Vol 8 (8) ◽  
pp. 8023-8082 ◽  
Author(s):  
T. Verhoelst ◽  
J. Granville ◽  
F. Hendrick ◽  
U. Köhler ◽  
C. Lerot ◽  
...  

Abstract. Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement uncertainties but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between on the one hand GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and on the other hand direct-sun and zenith-sky reference measurements such as from Dobsons, Brewers, and zenith scattered light (ZSL-)DOAS instruments respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the comparisons with ZSL-DOAS instruments at high latitudes, especially in the presence of a polar vortex. At tropical latitudes, where TOC variability is lower, both types of errors remain below about 1 % and consequently do not contribute significantly to the comparison error budget. The detailed analysis of the comparison results, including now the metrological errors, suggests that the published random measurement uncertainties for GODFITv3 reprocessed satellite data are potentially overestimated, and adjustments are proposed here. This successful application of the OSSSMOSE sytem to close for the first time the error budget of TOC comparisons, bodes well for potential future applications, which are briefly touched upon.


2012 ◽  
Vol 30 (10) ◽  
pp. 1435-1449 ◽  
Author(s):  
E. A. Wolfram ◽  
J. Salvador ◽  
F. Orte ◽  
R. D'Elia ◽  
S. Godin-Beekmann ◽  
...  

Abstract. Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.


2020 ◽  
Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Christophe Lerot ◽  
Klaus-Peter Heue ◽  
...  

<p>The Sentinel-5 Precursor (S5P) mission, launched in October 2017, carries the TROPOspheric Monitoring Instrument (TROPOMI), which provides a daily global coverage at a spatial resolution as high as 5.5 km x 3.5 km and will extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, ozone remains one of the leading species of interest during this mission.</p><p>In this work, two and a half years of TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily and individual, globally distributed, ground-based quality assured Brewer and Dobson TOC measurements. The daily ground-based ozone measurements used here are deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). The individual Brewer measurements are made available by the European Brewer Network (Eubrewnet). Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d’Analyse par Observation Zénitale), are used for the validation.</p><p>The quality of the TROPOMI TOC data is evaluated in terms of the influence of various geophysical quantities such as location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5% and 2.5 %–4.5 %, respectively. Moreover, based on the full available dataset, a first attempt is made for a drift investigation.</p><p>Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known spaceborne sensors, namely, the Ozone Mapping Profiler Suite, on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA, and the Global Ozone Monitoring Experiment 2 (GOME-2), on board the Metop-A (GOME-2/Metop-A) and Metop-B (GOME-2/Metop-B) satellites. This analysis shows a very good agreement for both TROPOMI products with well-established instruments, with the absolute differences in mean bias and mean standard deviation being below +0.7% and 1%, respectively.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


2021 ◽  
Vol 13 (11) ◽  
pp. 2098
Author(s):  
Yuanyuan Qian ◽  
Yuhan Luo ◽  
Fuqi Si ◽  
Haijin Zhou ◽  
Taiping Yang ◽  
...  

Global measurements of total ozone are necessary to evaluate ozone hole recovery above Antarctica. The Environmental Trace Gases Monitoring Instrument (EMI) onboard GaoFen 5, launched in May 2018, was developed to measure and monitor the global total ozone column (TOC) and distributions of other trace gases. In this study, some of the first global TOC results of the EMI using the differential optical absorption spectroscopy (DOAS) method and validation with ground-based TOC measurements and data derived from Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) observations are presented. Results show that monthly average EMI TOC data had a similar spatial distribution and a high correlation coefficient (R ≥ 0.99) with both OMI and TROPOMI TOC. Comparisons with ground-based measurements from the World Ozone and Ultraviolet Radiation Data Centre also revealed strong correlations (R > 0.9). Continuous zenith sky measurements from zenith scattered light differential optical absorption spectroscopy instruments in Antarctica were also used for validation (R = 0.9). The EMI-derived observations were able to account for the rapid change in TOC associated with the sudden stratospheric warming event in October 2019; monthly average TOC in October 2019 was 45% higher compared to October 2018. These results indicate that EMI TOC derived using the DOAS method is reliable and has the potential to be used for global TOC monitoring.


2011 ◽  
Vol 32 (9) ◽  
pp. 2535-2545 ◽  
Author(s):  
K. Eleftheratos ◽  
C. S. Zerefos ◽  
E. Gerasopoulos ◽  
I. S. A. Isaksen ◽  
B. Rognerud ◽  
...  
Keyword(s):  

2005 ◽  
Vol 5 (11) ◽  
pp. 3159-3172 ◽  
Author(s):  
G. Nikulin ◽  
A. Karpechko

Abstract. The wintertime ozone buildup over the Northern Hemisphere (NH) midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002). The ozone buildup begins locally in October with positive total ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. The local onset of the buildup in October is not evident in zonal mean ozone tendency, which is close to zero. From November to March, zonal mean total ozone tendency (50°–60° N) shows a strong correlation (|r|=0.7) with several zonal mean parameters associated to the mean meridional circulation, namely: eddy heat flux, temperature tendency, the vertical residual velocity and the residual streamfunction. At the same time, on the latitude-altitude cross section, correlation patterns between ozone tendency and widely used eddy heat flux are not uniform during winter. The strongest correlations are located equatorward (almost throughout the stratosphere) or poleward (only in the lower stratosphere) of the edge of the polar vortex. Such distribution may depend on the existence of the midlatitude and polar waveguides which defined refraction of upward propagating waves from the troposphere either to the midlatitude stratosphere or to the polar stratosphere. As a consequence of the nonuniform correlation patterns, heat flux averaged over the common region 45°–75° N, 100 hPa is not always an optimum proxy for statistical models describing total ozone variability in midlatitudes. Other parameters approximating the strength of the mean meridional circulation have more uniform and stable correlation patterns with ozone tendency during winter. We show that the NH midlatitude ozone buildup has a stable statistical relationship with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1067-1090 ◽  
Author(s):  
Marie-Isabelle Pujol ◽  
Yannice Faugère ◽  
Guillaume Taburet ◽  
Stéphanie Dupuy ◽  
Camille Pelloquin ◽  
...  

Abstract. The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features.An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than  ∼  250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.


Sign in / Sign up

Export Citation Format

Share Document