scholarly journals Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

2016 ◽  
Vol 9 (7) ◽  
pp. 3205-3222 ◽  
Author(s):  
U. Frieß ◽  
H. Klein Baltink ◽  
S. Beirle ◽  
K. Clémer ◽  
F. Hendrick ◽  
...  

Abstract. A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

2016 ◽  
Author(s):  
U. Frieß ◽  
H. Klein Baltink ◽  
S. Beirle ◽  
K. Clèmer ◽  
F. Hendrick ◽  
...  

Abstract. A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in-situ measurements of a humidity controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOT from MAX-DOAS and sun photometer show a good correlation (R > 0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.


2021 ◽  
Vol 14 (8) ◽  
pp. 5299-5318
Author(s):  
Stefan F. Schreier ◽  
Tim Bösch ◽  
Andreas Richter ◽  
Kezia Lange ◽  
Michael Revesz ◽  
...  

Abstract. Since May 2017 and August 2018, two ground-based MAX-DOAS (multi-axis differential optical absorption spectroscopy) instruments have been continuously recording daytime spectral UV–visible measurements in the northwest (University of Natural Resources and Life Sciences (BOKU) site) and south (Arsenal site), respectively, of the Vienna city center (Austria). In this study, vertical aerosol extinction (AE) profiles, aerosol optical depth (AOD), and near-surface AE are retrieved from MAX-DOAS measurements recorded on cloud-free days applying the Bremen Optimal estimation REtrieval for Aerosols and trace gaseS (BOREAS) algorithm. Measurements of atmospheric profiles of pressure and temperature obtained from routinely performed sonde ascents are used to calculate box-air-mass factors and weighting functions for different seasons. The performance of BOREAS was evaluated against co-located ceilometer, sun photometer, and in situ instrument observations covering all four seasons. The results show that the vertical AE profiles retrieved from the BOKU UV–visible MAX-DOAS observations are in very good agreement with data from the co-located ceilometer, reaching correlation coefficients (R) of 0.936–0.996 (UV) and 0.918–0.999 (visible) during the fall, winter, and spring seasons. Moreover, AE extracted using the lowest part of MAX-DOAS vertical profiles (up to 100 m above ground) is highly consistent with near-surface ceilometer AE (R>0.865 and linear regression slopes of 0.815–1.21) during the fall, winter, and spring seasons. A strong correlation is also found for the BOREAS-based AODs when compared to the AERONET ones. Notably, the highest correlation coefficients (R=0.953 and R=0.939 for UV and visible, respectively) were identified for the fall season. While high correlation coefficients are generally found for the fall, winter, and spring seasons, the results are less reliable for measurements taken during summer. For the first time, the spatial variability of AOD and near-surface AE over the urban environment of Vienna is assessed by analyzing the retrieved and evaluated BOREAS aerosol profiling products in terms of different azimuth angles of the two MAX-DOAS instruments and for different seasons. We found that the relative differences of averaged AOD between different azimuth angles are 7–13 %, depending on the season. Larger relative differences of up to 32 % are found for near-surface AE in the different azimuthal directions. This study revealed the strong capability of BOREAS to retrieve AE profiles, AOD, and near-surface AE over urban environments and demonstrated its use for identifying the spatial variability of aerosols in addition to the temporal variation.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1037
Author(s):  
Siyang Cheng ◽  
Junli Jin ◽  
Jianzhong Ma ◽  
Xiaobin Xu ◽  
Liang Ran ◽  
...  

Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed during the summer (13 June–20 August) of 2014 at a rural site in North China Plain. The vertical profiles of aerosol extinction (AE) in the lower troposphere were retrieved to analyze the temporal variations of AE profiles, near-surface AE, and aerosol optical depth (AOD). The average AOD and near-surface AE over the period of study were 0.51 ± 0.26 and 0.33 ± 0.18 km−1 during the effective observation period, respectively. High AE events and elevated AE layers were identified based on the time series of hourly AE profiles, near-surface AEs and AODs. It is found that in addition to the planetary boundary layer height (PBLH) and relative humidity (RH), the variations in the wind field have large impacts on the near-surface AE, AOD, and AE profile. Among 16 wind sectors, higher AOD or AE occur mostly in the directions of the cities upstream. The diurnal variations of the AE profiles, AODs and near-surface AEs are significant and influenced mainly by the source emissions, PBLH, and RH. The AE profile shape from MAX-DOAS measurement is generally in agreement with that from light detection and ranging (lidar) observations, although the AE absolute levels are different. Overall, ground-based MAX-DOAS can serve as a supplement to measure the AE vertical profiles in the lower troposphere.


2018 ◽  
Author(s):  
Yang Wang ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Sebastian Böhnke ◽  
Isabelle De Smedt ◽  
...  

Abstract. A Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument was deployed in May and June 2016 at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xingtai (one of the most polluted cities in China) during the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) and Air chemistry Research In Asia (ARIAs) joint experiments to derive tropospheric vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols. Aerosol optical depths derived from MAX-DOAS were found to be consistent with collocated sun-photometer measurements. Also the derived near-surface aerosol extinction and HCHO mixing ratio agree well with coincident visibility meter and in situ HCHO measurements, with mean HCHO near-surface mixing ratios of ~ 3.5 ppb. Underestimates of MAX-DOAS results compared to in situ measurements of NO2 (~ 60 %), SO2 (~ 20 %) are found expectedly due to vertical and horizontal inhomogeneity of trace gases. Vertical profiles of aerosols and NO2, SO2 are reasonably consistent with those measured by a collocated Raman Lidar and aircraft spirals over the station. The deviations can be attributed to differences in sensitivity as a function of altitude and substantial horizontal gradients of pollutants. Aerosols, HCHO, and CHOCHO profiles typically extended to higher altitudes (with 75 % integrated column located below ~ 1.4 km) than did NO2, SO2, and HONO (with 75 % integrated column below ~ 0.5 km) under polluted condition. Lifted layers were systematically observed for all species, (except HONO), indicating accumulation, secondary formation, or long-range transport of the pollutants at higher altitudes. Maximum values routinely occurred in the morning for NO2, SO2, and HONO, but around noon for aerosols, HCHO, and CHOCHO, mainly dominated by photochemistry, characteristic upslope/downslope circulation and PBL dynamics. Significant day-to-day variations are found for all species due to the effect of regional transport and changes in synoptic pattern analysed with HYSPLIT trajectories. Low pollution was often observed for air masses from the north-west (behind cold fronts), and high pollution from the southern areas such as industrialized Wuan. The contribution of regional transport for the pollutants measured at the site during the observation period was estimated to be about 20 % to 30 % for trace gases, and about 50 % for aerosols. In addition, agricultural burning events impacted the day-to-day variations of HCHO, CHOCHO and aerosols.


2020 ◽  
Vol 13 (3) ◽  
pp. 1129-1155 ◽  
Author(s):  
Zoë Y. W. Davis ◽  
Udo Frieß ◽  
Kevin B. Strawbridge ◽  
Monika Aggarwaal ◽  
Sabour Baray ◽  
...  

Abstract. Vertical profiles of aerosols, NO2, and SO2 were retrieved from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements at a field site in northern Alberta, Canada, during August and September 2013. The site is approximately 16 km north of two mining operations that are major sources of industrial pollution in the Athabasca oil sands region. Pollution conditions during the study ranged from atmospheric background conditions to heavily polluted with elevated plumes, according to the meteorology. This study aimed to evaluate the performance of the aerosol and trace gas retrievals through comparison with data from a suite of other instruments. Comparisons of aerosol optical depths (AODs) from MAX-DOAS aerosol retrievals, lidar vertical profiles of aerosol extinction, and the AERONET sun photometer indicate good performance by the MAX-DOAS retrievals. These comparisons and modelling of the lidar S ratio highlight the need for accurate knowledge of the temporal variation in the S ratio when comparing MAX-DOAS and lidar data. Comparisons of MAX-DOAS NO2 and SO2 retrievals to Pandora spectral sun photometer vertical column densities (VCDs) and active DOAS mixing ratios indicate good performance of the retrievals, except when vertical profiles of pollutants within the boundary layer varied rapidly, temporally, and spatially. Near-surface retrievals tended to overestimate active DOAS mixing ratios. The MAX-DOAS observed elevated pollution plumes not observed by the active DOAS, highlighting one of the instrument's main advantages. Aircraft measurements of SO2 were used to validate retrieved vertical profiles of SO2. Advantages of the MAX-DOAS instrument include increasing sensitivity towards the surface and the ability to simultaneously retrieve vertical profiles of aerosols and trace gases without requiring additional parameters, such as the S ratio. This complex dataset provided a rare opportunity to evaluate the performance of the MAX-DOAS retrievals under varying atmospheric conditions.


2020 ◽  
Author(s):  
Yang Wang ◽  
Arnoud Apituley ◽  
Alkiviadis Bais ◽  
Steffen Beirle ◽  
Nuria Benavent ◽  
...  

Abstract. We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different MAX-DOAS instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2), in September 2016, at Cabauw, The Netherlands (51.97° N, 4.93° E). Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3 × 1015 molecules cm−2, which is half of the typical random discrepancy of 0.6 × 1015 molecules cm−2. For a typical high HONO delta SCD of 2 × 1015 molecules cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ~ ±0.5 × 1015 molecules cm−2 and ~ ±0.1 ppb (typically ~ 20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ~ 5 %. However, some data sets with substantial larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ~ 3 × 1015 molecules cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ~ 0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 ppb and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can well reproduce the different HONO profile shapes. Therefore we conclude that the feature of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to well represent the ambient HONO profiles.


2016 ◽  
Vol 9 (9) ◽  
pp. 4569-4585 ◽  
Author(s):  
Aurélien Chauvigné ◽  
Karine Sellegri ◽  
Maxime Hervo ◽  
Nadège Montoux ◽  
Patrick Freville ◽  
...  

Abstract. Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer observations are then compared to the near-surface in situ measurements, at dry and at ambient relative humidities. When in situ measurements are considered at dry state, the in situ fine mode diameters are 44 % higher than the sun-photometer-retrieved diameters and in situ volume concentrations are 20 % lower than those of the sun-photometer-retrieved fine mode concentration. Using a parameterised hygroscopic growth factor applied to aerosol diameters, the difference between in situ and retrieved diameters grows larger. Coarse mode in situ diameters and concentrations show a good correlation with retrieved PSDs from remote sensing.


2019 ◽  
Author(s):  
Zoë Y. W. Davis ◽  
Udo Frieβ ◽  
Kevin B. Strawbridge ◽  
Monica Aggarwaal ◽  
Sabour Baray ◽  
...  

Abstract. Vertical profiles of aerosols, NO2, and SO2 were retrieved from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements at a field site in northern Alberta, Canada, during August and September 2013. The site is approximately 16 km north of two mining operations that are major sources of industrial pollution in the Athabasca Oil Sands Region. Pollution conditions during the study ranged from atmospheric background conditions to heavily polluted with elevated plumes, according to meteorology. This study aimed to evaluate the performance of the aerosol and trace gas retrievals through comparison with data from a suite of other instruments. Comparisons of AODs from MAX-DOAS aerosol retrievals, lidar vertical profiles of aerosol extinction, and AERONET sun photometer indicate good performance by the MAX-DOAS retrievals. These comparisons and modelling of the lidar S-ratio highlight the need for accurate knowledge of the temporal variation in the S-ratio when comparing MAX-DOAS and lidar data. Comparisons of MAX-DOAS NO2 and SO2 retrievals to Pandora spectral sun photometer VCDs and Active-DOAS mixing ratios indicate good performance of the retrievals except when vertical profiles of pollutants within the boundary layer varied rapidly, temporally and spatially. Near-surface retrievals tended to overestimate Active-DOAS mixing ratios. The MAX-DOAS observed elevated pollution plumes not observed by the Active-DOAS, highlighting one of the instrument's main advantages. Aircraft measurements of SO2 were used to validate retrieved vertical profiles of SO2. Advantages of the MAX-DOAS instrument include increasing sensitivity towards the surface and the ability to simultaneously retrieve vertical profiles of aerosols and trace gases without requiring additional parameters such as the S-ratio. This complex dataset provided a rare opportunity to evaluate the performance of the MAX-DOAS retrievals under varying atmospheric conditions.


2020 ◽  
Vol 13 (9) ◽  
pp. 5087-5116 ◽  
Author(s):  
Yang Wang ◽  
Arnoud Apituley ◽  
Alkiviadis Bais ◽  
Steffen Beirle ◽  
Nuria Benavent ◽  
...  

Abstract. We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3×1015 molec. cm−2, which is half of the typical random discrepancy of 0.6×1015 molec. cm−2. For a typical high HONO delta SCD of 2×1015 molec. cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ∼±0.5×1014 molec. cm−2 and ∼±0.1 ppb (typically ∼20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ∼5 %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ∼3×1014 molec. cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ∼0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to represent the ambient HONO profiles well.


2005 ◽  
Vol 5 (3) ◽  
pp. 2897-2945 ◽  
Author(s):  
C. Hak ◽  
I. Pundt ◽  
C. Kern ◽  
U. Platt ◽  
J. Dommen ◽  
...  

Abstract. Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.


Sign in / Sign up

Export Citation Format

Share Document