scholarly journals From pixels to patches: a cloud classification method based on bag of micro-structures

2015 ◽  
Vol 8 (10) ◽  
pp. 10213-10247 ◽  
Author(s):  
Q. Li ◽  
Z. Zhang ◽  
W. Lu ◽  
J. Yang ◽  
Y. Ma ◽  
...  

Abstract. Automatic cloud classification has attracted more and more attention with the increasing development of whole sky imagers, but it is still in progress for ground-based cloud observation. This paper proposes a new cloud classification method, named bag of micro-structures (BoMS). This method treats an all-sky image as a collection of micro-structures mapped from image patches, rather than a collection of pixels. And then it constructs an image representation with a weighted histogram of micro-structures. Lastly, a support vector machine (SVM) classifier is applied on the image representation because SVM is appealing for sparse and high dimensional feature space. Five different sky conditions are identified: cirriform, cumuliform, stratiform, clear sky and mixed cloudiness that often appears in all-sky images but is seldom addressed in literature. BoMS is evaluated on a large dataset, which contains 5000 all-sky images that are captured by a total-sky cloud imager located in Tibet (29.25° N, 88.88° E). BoMS achieves an accuracy of 90.9 % for 10 fold cross-validation, and it outperforms the state-of-the-art method with an increase of about 19 %. Furthermore, influence of key parameters in BoMS are investigated to verify their robustness.

2016 ◽  
Vol 9 (2) ◽  
pp. 753-764 ◽  
Author(s):  
Qingyong Li ◽  
Zhen Zhang ◽  
Weitao Lu ◽  
Jun Yang ◽  
Ying Ma ◽  
...  

Abstract. Automatic cloud classification has attracted more and more attention with the increasing development of whole sky imagers, but it is still in progress for ground-based cloud observation. This paper proposes a new cloud classification method, named bag of micro-structures (BoMS). This method treats an all-sky image as a collection of micro-structures mapped from image patches, rather than a collection of pixels. It represents the image with a weighted histogram of micro-structures. Based on this representation, BoMS recognizes the cloud class of the image by a support vector machine (SVM) classifier. Five classes of sky condition are identified: cirriform, cumuliform, stratiform, clear sky, and mixed cloudiness. BoMS is evaluated on a large data set, which contains 5000 all-sky images captured by a total-sky cloud imager located in Tibet (29.25° N, 88.88° E). BoMS achieves an accuracy of 90.9 % for 10-fold cross-validation, and it outperforms state-of-the-art methods with an increase of 19 %. Furthermore, influence of key parameters in BoMS is investigated to verify their robustness.


2018 ◽  
Vol 06 (04) ◽  
pp. 267-275
Author(s):  
Ajay Shankar ◽  
Mayank Vatsa ◽  
P. B. Sujit

Development of low-cost robots with the capability to detect and avoid obstacles along their path is essential for autonomous navigation. These robots have limited computational resources and payload capacity. Further, existing direct range-finding methods have the trade-off of complexity against range. In this paper, we propose a vision-based system for obstacle detection which is lightweight and useful for low-cost robots. Currently, monocular vision approaches used in the literature suffer from various environmental constraints such as texture and color. To mitigate these limitations, a novel algorithm is proposed, termed as Pyramid Histogram of Oriented Optical Flow ([Formula: see text]-HOOF), which distinctly captures motion vectors from local image patches and provides a robust descriptor capable of discriminating obstacles from nonobstacles. A support vector machine (SVM) classifier that uses [Formula: see text]-HOOF for real-time obstacle classification is utilized. To avoid obstacles, a behavior-based collision avoidance mechanism is designed that updates the probability of encountering an obstacle while navigating. The proposed approach depends only on the relative motion of the robot with respect to its surroundings, and therefore is suitable for both indoor and outdoor applications and has been validated through simulated and hardware experiments.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1443
Author(s):  
Mai Ramadan Ibraheem ◽  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Mohammed Elmogy

The formation of malignant neoplasm can be seen as deterioration of a pre-malignant skin neoplasm in its functionality and structure. Distinguishing melanocytic skin neoplasms is a challenging task due to their high visual similarity with different types of lesions and the intra-structural variants of melanocytic neoplasms. Besides, there is a high visual likeliness level between different lesion types with inhomogeneous features and fuzzy boundaries. The abnormal growth of melanocytic neoplasms takes various forms from uniform typical pigment network to irregular atypical shape, which can be described by border irregularity of melanocyte lesion image. This work proposes analytical reasoning for the human-observable phenomenon as a high-level feature to determine the neoplasm growth phase using a novel pixel-based feature space. The pixel-based feature space, which is comprised of high-level features and other color and texture features, are fed into the classifier to classify different melanocyte neoplasm phases. The proposed system was evaluated on the PH2 dermoscopic images benchmark dataset. It achieved an average accuracy of 95.1% using a support vector machine (SVM) classifier with the radial basis function (RBF) kernel. Furthermore, it reached an average Disc similarity coefficient (DSC) of 95.1%, an area under the curve (AUC) of 96.9%, and a sensitivity of 99%. The results of the proposed system outperform the results of other state-of-the-art multiclass techniques.


Author(s):  
V. S. Bramhe ◽  
S. K. Ghosh ◽  
P. K. Garg

<p><strong>Abstract.</strong> Remote sensing techniques provide efficient and cost-effective approach to monitor the expansion of built-up area, in comparison to other traditional approaches. For extracting built-up class, one of the common approaches is to use spectral and spatial features such as, Normalized Difference Built- up index (NDBI), GLCM texture, Gabor filters etc. However, it is observed that classes such as river soil and fallow land usually mix up with built-up class due to their close spectral similarity. Intermixing of classes have been observed in the classified image when using spectral channels. In this paper, an approach has been proposed which uses urban based spectral indices and textural features to extract built-up areas. Three well known spectral indices i.e. NDBI, Built-up Area Extraction Index (BAEI) and Normalized Difference Bareness Index (NDBai) have been used in this work. Along with spectral indices, local spatial dependency of neighborhood regions is captured using eight GLCM based textural feature, such as, Contrast, Correlation, Energy and Homogeneity etc. for each image band. All textural and spectral indices bands are combined and used for extracting built-up areas using Support Vector Machine (SVM) classifier. Results suggest 4.91% increase in overall accuracy when using texture and spectral indices in comparison with 84.38% overall accuracy achieved when using spectral data only. It is observed that built-up class are more separable in the projected spectral-spatial feature space in comparison to spectral channels. Incorporation of textural features with spectral features reduces the misclassification error and provides results with less salt and pepper noise.</p>


Author(s):  
F. Samadzadega ◽  
H. Hasani

Hyperspectral imagery is a rich source of spectral information and plays very important role in discrimination of similar land-cover classes. In the past, several efforts have been investigated for improvement of hyperspectral imagery classification. Recently the interest in the joint use of LiDAR data and hyperspectral imagery has been remarkably increased. Because LiDAR can provide structural information of scene while hyperspectral imagery provide spectral and spatial information. The complementary information of LiDAR and hyperspectral data may greatly improve the classification performance especially in the complex urban area. In this paper feature level fusion of hyperspectral and LiDAR data is proposed where spectral and structural features are extract from both dataset, then hybrid feature space is generated by feature stacking. Support Vector Machine (SVM) classifier is applied on hybrid feature space to classify the urban area. In order to optimize the classification performance, two issues should be considered: SVM parameters values determination and feature subset selection. Bees Algorithm (BA) is powerful meta-heuristic optimization algorithm which is applied to determine the optimum SVM parameters and select the optimum feature subset simultaneously. The obtained results show the proposed method can improve the classification accuracy in addition to reducing significantly the dimension of feature space.


2020 ◽  
Author(s):  
Hongqiang Li ◽  
Sai Zhang ◽  
Shasha Zuo ◽  
Zhen Zhang ◽  
Binhua Wang ◽  
...  

BACKGROUND Driven by the increasing demand for potential patients to monitor their own heart health, wearable technology is increasingly helping people to better monitor their heart health status at a medical level. OBJECTIVE The aim of this study was to develop a flexible and non-contact wearable electrocardiogram system, which can achieve real-time monitoring and primary diagnosis. METHODS A flexible electrocardiogram (ECG) acquisition device (wearable ECG) is designed based on flexible front-end circuit and textile capacitive electrodes, which are based on a conductive textile instead of rigid metal plates. The multi-domain feature space consists of time-domain features and frequency-domain statistical features, which can be used for classification via a back-propagation neural network (BPNN) and a support vector machine (SVM), both of which are optimized using a genetic algorithm. RESULTS The BPNN classifier exhibits good performance, with an accuracy of 98.33%, a sensitivity of 98.33%, a specificity of 99.63% and a positive predictive value of 97.85%. The SVM classifier achieves a higher classification accuracy of 98.89% and also performs better than the BPNN classifier in terms of the sensitivity, specificity and positive predictive value, achieving values of 98.89%, 99.81% and 98.89%, respectively. CONCLUSIONS The experimental results reveal that there is a better classification effect of SVM when classifying normal heart rhythms and 8 types of arrhythmia. The proposed wearable ECG monitoring can aid in the primary diagnosis of certain heart diseases.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Ning Zhang ◽  
Yueting Wang ◽  
Xiaoli Zhang

Abstract Background Tree crown extraction is an important research topic in forest resource monitoring. In particular, it is a prerequisite for disease detection and mapping the degree of damage caused by forest pests. Unmanned aerial vehicle (UAV)-based hyperspectral imaging is effective for surveying and monitoring forest health. This article proposes a spectral-spatial classification framework that uses UAV-based hyperspectral images and combines a support vector machine (SVM) with an edge-preserving filter (EPF) for completing classification more finely to automatically extract tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu (D. tabulaeformis) in Jianping county of Liaoning province, China. Results Experiments were conducted using UAV-based hyperspectral images, and the accuracy of the results was assessed using the mean structure similarity index (MSSIM), the overall accuracy (OA), kappa coefficient, and classification accuracy of damaged Pinus tabulaeformis. Optimized results showed that the OA of the spectral-spatial classification method can reach 93.17%, and the extraction accuracy of damaged tree crowns is 7.50–9.74% higher than that achieved using the traditional SVM classifier. Conclusion This study is one of only a few in which a UAV-based hyperspectral image has been used to extract tree crowns damaged by D. tabulaeformis. Moreover, the proposed classification method can effectively extract damaged tree crowns; hence, it can serve as a reference for future studies on both forest health monitoring and larger-scale forest pest and disease assessment.


2013 ◽  
Vol 373-375 ◽  
pp. 1053-1059
Author(s):  
Jian Liao ◽  
Shao Lei Zhou ◽  
Xian Jun Shi

Kernel parameter selection of support vector machine (SVM) is difficult in practical application. A parameter selection algorithm of SVM was proposed based on data maximum variance - entropy criterion by analyzing the principle of SVM classifier. The algorithm uses data maximum variance - entropy criterion to measure the linear separability of dataset in the feature space, and combines with particle swarm optimization (PSO) algorithm for parameter optimization. The experiment results on datasets from UCI show that the algorithm is excellence in accuracy and improves the training performance of SVM. To further verify the effectiveness of the algorithm, applying the method in fault diagnosis of biquadratic filter circuit, results prove it improves the diagnostic accuracy.


2015 ◽  
Vol 8 (5) ◽  
pp. 4653-4709 ◽  
Author(s):  
Y. Wang ◽  
M. Penning de Vries ◽  
P. H. Xie ◽  
S. Beirle ◽  
S. Dörner ◽  
...  

Abstract. Multi-Axis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of trace gases can be strongly influenced by clouds and aerosols. Thus it is important to identify clouds and characterise their properties. In a recent study Wagner et al. (2014) developed a cloud classification scheme based on the MAX-DOAS measurements themselves with which different "sky conditions" (e.g. clear sky, continuous clouds, broken clouds) can be distinguished. Here we apply this scheme to long term MAX-DOAS measurements from 2011 to 2013 in Wuxi, China (31.57° N, 120.31° E). The original algorithm has been modified, in particular in order to account for smaller solar zenith angles (SZA). Instrumental degradation is accounted for to avoid artificial trends of the cloud classification. We compared the results of the MAX-DOAS cloud classification scheme to several independent measurements: aerosol optical depth from a nearby AERONET station and from MODIS, visibility derived from a visibility meter; and various cloud parameters from different satellite instruments (MODIS, OMI, and GOME-2). The most important findings from these comparisons are: (1) most cases characterized as clear sky with low or high aerosol load were associated with the respective AOD ranges obtained by AERONET and MODIS, (2) the observed dependences of MAX-DOAS results on cloud optical thickness and effective cloud fraction from satellite indicate that the cloud classification scheme is sensitive to cloud (optical) properties, (3) separation of cloudy scenes by cloud pressure shows that the MAX-DOAS cloud classification scheme is also capable of detecting high clouds, (4) some clear sky conditions, especially with high aerosol load, classified from MAX-DOAS observations corresponding to the optically thin and low clouds derived by satellite observations probably indicate that the satellite cloud products contain valuable information on aerosols.


2021 ◽  
pp. 1-13
Author(s):  
Nadir O. Hamed ◽  
Ahmed H. Samak ◽  
Mostafa A. Ahmad

The evolution of technology has brought new challenges and opportunities for the different dimensions of feature space. The higher dimension of the feature space is one of the most critical issues in e-mail classification problems due to accuracy considerations. The problem of finding the subset features that significantly influence the performance of e-mail spam classification has become one of the important challenges. This paper proposes to overcome such a problem, an intelligent approach to Binary Differential Evolution Support Vector Machine (BDE-SVM). The proposed approach enhances the Binary Differential Evolution (BDE) algorithm based on the correlation coefficient as a fitness function to select the significant subset feature evaluated by an SVM classifier. To our best of knowledge, the correlation coefficient as the fitness function has not been used in the differential evolution algorithm before. The selected subset feature is used to assess the most features that contribute to the reliability of the email spam classification. The finding of the enhanced BDE is to present a powerful accuracy. The tests were conducted using “Spambase” and “SpamAssassin.” Identified benchmark datasets are to assess the feasibility of the proposed solution. The result with full-feature accuracy was 93.55 percent compared to the proposed BDE-SVM approach, which is 93.99 percent. Empirical findings also show that our method is capable of effectively increasing the number of features required to enhance the reliability of the email spam classification.


Sign in / Sign up

Export Citation Format

Share Document