scholarly journals Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures

2001 ◽  
Vol 19 (10/12) ◽  
pp. 1613-1640 ◽  
Author(s):  
M. Lockwood ◽  
A. Fazakerley ◽  
H. Opgenoorth ◽  
J. Moen ◽  
A. P. van Eyken ◽  
...  

Abstract. We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ( [ XGSM, YGSM, ZGSM ] ≈ [ 2, 7, 9 ] RE). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is welldefined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events correlate well with swings of the IMF clock angle (in GSM) to near 90°. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10–15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvénic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 RE in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)

2005 ◽  
Vol 23 (7) ◽  
pp. 2605-2620 ◽  
Author(s):  
R. C. Fear ◽  
A. N. Fazakerley ◽  
C. J. Owen ◽  
A. D. Lahiff ◽  
E. A. Lucek ◽  
...  

Abstract. On the 25th January 2002 between 10:00 and 12:00 UT, the four Cluster spacecraft passed through the northern high-latitude cusp, the dayside magnetosphere and into the magnetosheath in a linear formation. In the magnetosphere the PEACE electron spectrometers on the four spacecraft all observed a series of transient bursts of magnetosheath-like plasma, but without bipolar magnetic signatures in the magnetopause normal component as might be expected if the plasma had been injected by transient reconnection (flux transfer events – FTEs). Reordering the data using the magnetopause transition parameter reveals that these plasma observations, the related variations in the magnetic field and the balance of magnetic and thermal gas pressures are consistent with transient entries into a stable high-latitude boundary layer structure. However, once some of the spacecraft entered the magnetosheath, FTE signatures were observed outside the magnetopause at the same time as some of the boundary layer entries occurred at the other spacecraft inside. Thus, (a) the lack of a bipolar BN signature is inconsistent with the traditional picture of a magnetospheric FTE, and (b) the cause of the observed entry of the spacecraft into the boundary layer (pressure pulse or passing magnetosheath FTE) can only be determined by spacecraft observations in the magnetosheath. Keywords. Magnetospheric physics (Magnetopause, cusp and bondary layers; Solar wind- magnetosphere interactions; Magnetosheath)


1994 ◽  
Vol 12 (2/3) ◽  
pp. 183-187 ◽  
Author(s):  
B. V. Rezhenov ◽  
Y. P. Maltsev

Abstract. It is shown that the interaction of the interplanetary magnetic field (IMF), when it has southward component, with the geomagnetic field leads to the formation of an enhanced pressure layer (EPL) near the magnetopause. Currents flowing on the boundary between the EPL and the magnetosheath prevent the IMF from penetrating the magnetosphere. However, the outward boundary of the EPL is unstable. The interchange instability permanently destroys the EPL. Separate filaments of the EPL move away from the Earth. New colder plasma of the magnetosheath with a frozen magnetic field replaces the hotter EPL plasma, and the process of EPL formation and destruction repeats itself. The instability increment is calculated for various magnitudes of the azimuthal wave number, ky, and curvature radius of the magnetic field lines, Rc. The disturbances with R-1e≤ky≤4R-1e (where Re is the Earth's radius) and Rc≅Re are the most unstable. A possible result of the interchange instability of the EPL may be patchy reconnection, displayed as flux transfer events (FTEs) near the magnetopause.


2020 ◽  
Vol 496 (1) ◽  
pp. 67-79 ◽  
Author(s):  
K Bahari ◽  
N S Petrukhin ◽  
M S Ruderman

ABSTRACT We study the propagation and stability of kink waves in a twisted magnetic tube with the flow. The flow velocity is assumed to be parallel to the magnetic field, and the magnetic field lines are straight outside the tube. The density is constant inside and outside of the tube, and it monotonically decreases from its value inside the tube to that outside in the transitional or boundary layer. The flow speed and magnetic twist monotonically decrease in the transitional layer from their values inside the tube to zero outside. Using the thin tube and thin boundary layer (TTTB) approximation, we derived the dispersion equation determining the dependence of the wave frequency and decrement/increment on the wavenumber. When the kink wave frequency coincides with the local Alfvén frequency at a resonant surface inside the transitional layer, the kink wave is subjected to either resonant damping or resonant instability. We study the properties of kink waves in a particular unperturbed state where there is no flow and magnetic twist in the transitional layer. It is shown that in a tube with flow, the kink waves can propagate without damping for particular values of the flow speed. Kink waves propagating in the flow direction either damp or propagate without damping. Waves propagating in the opposite direction can either propagate without damping, or damp, or become unstable. The theoretical results are applied to the problem of excitation of kink waves in spicules and filaments in the solar atmosphere.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Todd Elder ◽  
Allen H. Boozer

The prominence of nulls in reconnection theory is due to the expected singular current density and the indeterminacy of field lines at a magnetic null. Electron inertia changes the implications of both features. Magnetic field lines are distinguishable only when their distance of closest approach exceeds a distance $\varDelta _d$ . Electron inertia ensures $\varDelta _d\gtrsim c/\omega _{pe}$ . The lines that lie within a magnetic flux tube of radius $\varDelta _d$ at the place where the field strength $B$ is strongest are fundamentally indistinguishable. If the tube, somewhere along its length, encloses a point where $B=0$ vanishes, then distinguishable lines come no closer to the null than $\approx (a^2c/\omega _{pe})^{1/3}$ , where $a$ is a characteristic spatial scale of the magnetic field. The behaviour of the magnetic field lines in the presence of nulls is studied for a dipole embedded in a spatially constant magnetic field. In addition to the implications of distinguishability, a constraint on the current density at a null is obtained, and the time required for thin current sheets to arise is derived.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


2021 ◽  
Vol 502 (1) ◽  
pp. 1263-1278
Author(s):  
Richard Kooij ◽  
Asger Grønnow ◽  
Filippo Fraternali

ABSTRACT The large temperature difference between cold gas clouds around galaxies and the hot haloes that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the presence of a magnetic field is highly anisotropic, being strongly suppressed in the direction perpendicular to the magnetic field lines. This is commonly modelled by using a simple prescription that assumes that thermal conduction is isotropic at a certain efficiency f < 1, but its precise value is largely unconstrained. We investigate the efficiency of thermal conduction by comparing the evolution of 3D hydrodynamical (HD) simulations of cold clouds moving through a hot medium, using artificially suppressed isotropic thermal conduction (with f), against 3D magnetohydrodynamical (MHD) simulations with (true) anisotropic thermal conduction. Our main diagnostic is the time evolution of the amount of cold gas in conditions representative of the lower (close to the disc) circumgalactic medium of a Milky-Way-like galaxy. We find that in almost every HD and MHD run, the amount of cold gas increases with time, indicating that hot gas condensation is an important phenomenon that can contribute to gas accretion on to galaxies. For the most realistic orientations of the magnetic field with respect to the cloud motion we find that f is in the range 0.03–0.15. Thermal conduction is thus always highly suppressed, but its effect on the cloud evolution is generally not negligible.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2002 ◽  
Vol 20 (3) ◽  
pp. 311-320 ◽  
Author(s):  
J. Mĕrka ◽  
J. Šafránková ◽  
Z. Nĕmeček

Abstract. The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


Sign in / Sign up

Export Citation Format

Share Document