scholarly journals An explanation for some fallstreak clouds

2002 ◽  
Vol 20 (5) ◽  
pp. 711-715 ◽  
Author(s):  
R. M. Worthington

Abstract. Fallstreak cirrus clouds are associated with super-saturated air, together with waves, instabilities and/or turbulence; however, their precise cause is usually uncertain. This paper uses already-published satellite, radiosonde and radar data, reanalysed to study some large fallstreaks which had been previously overlooked. The fallstreaks – up to 60 km long with a parent cloud 20 km wide – are caused by lifting and/or turbulence from a mountain wave, rather than, for example, Kelvin-Helmholtz instabilities. If turbulent breaking of mountain waves affects ice particle formation, this may be relevant for the seeder-feeder effect on orographic rain, and the efficiency of mountain-wave polar stratospheric clouds for ozone depletion.Key words. Meteorology and atmospheric dynamics (turbulence; waves and tides) – Atmospheric composition and structure (cloud physics and chemistry)

2003 ◽  
Vol 21 (3) ◽  
pp. 639-647 ◽  
Author(s):  
I. Astin ◽  
C. Kiemle

Abstract. A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM) and DIAL missions (e.g. WALES) are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length) be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.Key words. Atmospheric composition and structure (aerosols and particles) Meteorology and atmospheric dynamics (instruments and techniques; general circulation)


2001 ◽  
Vol 19 (7) ◽  
pp. 809-811 ◽  
Author(s):  
J. M. Vaquero ◽  
M. C. Gallego

Abstract. It is the purpose of this paper to present evidence concerning the observation of aurorae in the years 880 AD and 942 AD recorded by Arabs from the Iberian Peninsula and the north of Africa.Key words. Meteorology and atmospheric dynamics (general or miscellaneous) – Atmospheric composition and structure (airglow and aurora) – Magnetospheric physics (auroral phenomena)


2018 ◽  
Vol 36 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Paulo Prado Batista ◽  
Cristiano Max Wrasse ◽  
Gabriela Dornelles Bittencourt ◽  
...  

Abstract. The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2  < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88–92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases. Keywords. Atmospheric composition and structure (airglow and aurora) – meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


1999 ◽  
Vol 17 (2) ◽  
pp. 257-272 ◽  
Author(s):  
R. M. Worthington

Abstract. A simple method is described, based on standard VHF wind-profiler data, where imbalances of echo power between four off-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wave pattern. It is shown that the mountain wave azimuth (direction of the horizontal component of the wavevector), is given by the vector [ W (PE - P W ) ,W (PN - P S ) ]; PN, PS, PE, PW are radar echo powers, measured in dB, in beams pointed away from vertical by the same angle towards north, south, east and west respectively, and W is the vertical wind velocity. The method is applied to Aberystwyth MST radar data, and the calculated wave vector usually, but not always, points into the low-level wind direction. The mean vertical wind at Aberystwyth, which may also be affected by tilted aspect-sensitive layers, is investigated briefly using the entire radar output 1990-1997. The mean vertical-wind profile is inconsistent with existing theories, but a new mountain-wave interpretation is proposed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; instruments and techniques).


2021 ◽  
Vol 21 (12) ◽  
pp. 9515-9543
Author(s):  
Michael Weimer ◽  
Jennifer Buchmüller ◽  
Lars Hoffmann ◽  
Ole Kirner ◽  
Beiping Luo ◽  
...  

Abstract. Polar stratospheric clouds (PSCs) are a driver for ozone depletion in the lower polar stratosphere. They provide surface for heterogeneous reactions activating chlorine and bromine reservoir species during the polar night. The large-scale effects of PSCs are represented by means of parameterisations in current global chemistry–climate models, but one process is still a challenge: the representation of PSCs formed locally in conjunction with unresolved mountain waves. In this study, we investigate direct simulations of PSCs formed by mountain waves with the ICOsahedral Nonhydrostatic modelling framework (ICON) with its extension for Aerosols and Reactive Trace gases (ART) including local grid refinements (nesting) with two-way interaction. Here, the nesting is set up around the Antarctic Peninsula, which is a well-known hot spot for the generation of mountain waves in the Southern Hemisphere. We compare our model results with satellite measurements of PSCs from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and gravity wave observations of the Atmospheric Infrared Sounder (AIRS). For a mountain wave event from 19 to 29 July 2008 we find similar structures of PSCs as well as a fairly realistic development of the mountain wave between the satellite data and the ICON-ART simulations in the Antarctic Peninsula nest. We compare a global simulation without nesting with the nested configuration to show the benefits of adding the nesting. Although the mountain waves cannot be resolved explicitly at the global resolution used (about 160 km), their effect from the nested regions (about 80 and 40 km) on the global domain is represented. Thus, we show in this study that the ICON-ART model has the potential to bridge the gap between directly resolved mountain-wave-induced PSCs and their representation and effect on chemistry at coarse global resolutions.


2005 ◽  
Vol 23 (5) ◽  
pp. 1593-1602
Author(s):  
F. Sigernes ◽  
N. Lloyd ◽  
D. A. Lorentzen ◽  
R. Neuber ◽  
U.-P. Hoppe ◽  
...  

Abstract. On 6 December 2002, during winter darkness, an extraordinary event occurred in the sky, as viewed from Longyearbyen (78° N, 15° E), Svalbard, Norway. At 07:30 UT the southeast sky was surprisingly lit up in a deep red colour. The light increased in intensity and spread out across the sky, and at 10:00 UT the illumination was observed to reach the zenith. The event died out at about 12:30 UT. Spectral measurements from the Auroral Station in Adventdalen confirm that the light was scattered sunlight. Even though the Sun was between 11.8 and 14.6deg below the horizon during the event, the measured intensities of scattered light on the southern horizon from the scanning photometers coincided with the rise and setting of the Sun. Calculations of actual heights, including refraction and atmospheric screening, indicate that the event most likely was scattered solar light from a target below the horizon. This is also confirmed by the OSIRIS instrument on board the Odin satellite. The deduced height profile indicates that the scattering target is located 18–23km up in the stratosphere at a latitude close to 73–75° N, southeast of Longyearbyen. The temperatures in this region were found to be low enough for Polar Stratospheric Clouds (PSC) to be formed. The target was also identified as PSC by the LIDAR systems at the Koldewey Station in Ny-Ålesund (79° N, 12° E). The event was most likely caused by solar illuminated type II Polar Stratospheric Clouds that scattered light towards Svalbard. Two types of scenarios are presented to explain how light is scattered. Keywords. Atmospheric composition and structure (Transmissions and scattering of radiation; Middle atmospherecomposition and chemistry; Instruments and techniques) – History of geophysics (Atmospheric Sciences; The red-sky phenomena)


2000 ◽  
Vol 18 (4) ◽  
pp. 505-509 ◽  
Author(s):  
J. Siebert ◽  
C. Timmis ◽  
G. Vaughan ◽  
K. H. Fricke

Abstract. When the University of Bonn lidar on the Esrange (68°N, 21°E), Sweden, was switched on in the evening of July 18, 1998, a geometrically and optically thin cloud layer was present near 14 km altitude or 400 K potential temperature, where it persisted for two hours. The tropopause altitude was 4 km below the cloud altitude. The cloud particles depolarized the lidar returns, thus must they have been aspherical and hence solid. Atmospheric temperatures near 230 K were approximately 40 K too high to support ice particles at stratospheric water vapour pressures of a few ppmv. The isentropic back trajectory on 400 K showed the air parcels to have stayed clear of active major rocket launch sites. The air parcels at 400 K had traveled from the Aleutians across Canada and the Atlantic Ocean arriving above central Europe and then turned northward to pass over above the lidar station. Parcels at levels at ±25 K from 400 K had come from the pole and joined the 400 K trajectory path above eastern Canada. Apparently the cloud existed in a filament of air with an origin different from those filaments both above and below. Possibly the 400 K level air parcels had carried soot particles from forest wild fires in northern Canada or volcanic ash from the eruption of the Korovin Volcano in the Aleutian Islands.Key words: Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions) · Meteorology and atmospheric dynamics (middle atmospheric dynamics)


2004 ◽  
Vol 22 (2) ◽  
pp. 701-704 ◽  
Author(s):  
D. Kürschner ◽  
Ch. Jacobi

Abstract. The mesopause region monthly mean winds and semidiurnal tidal amplitudes and phases over Central Europe have been measured at Collm Observatory since September 1982. The regular annual cycle of the semidiurnal tidal amplitudes show maximum values during late August and September. In contrast to that, in autumn 2002 no enhancement of the tidal amplitudes was measured, while the autumn tidal phase transition occurred unusually early. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; climatology)


1999 ◽  
Vol 17 (10) ◽  
pp. 1352-1360 ◽  
Author(s):  
A. Adriani ◽  
F. Cairo ◽  
L. Pulvirenti ◽  
F. Cardillo ◽  
M. Viterbini ◽  
...  

Abstract. The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the "Istituto di Fisica dell'Atmosfera" launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere. Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere – composition and chemistry; instruments and techniques)


1999 ◽  
Vol 17 (11) ◽  
pp. 1457-1462 ◽  
Author(s):  
C.-F. Enell ◽  
Å. Steen ◽  
T. Wagner ◽  
U. Frieß ◽  
K. Pfeilsticker ◽  
...  

Abstract. Polar stratospheric clouds (PSCs) are often observed in the Kiruna region in northern Sweden, east of the Scandinavian mountain range, during wintertime. PSC occurrence can be detected by ground-based optical instruments. Most of these require clear tropospheric weather. By applying the zenith-sky colour index technique, which works under most weather conditions, the data availability can be extended. The observations suggest that PSC events, especially of type II (water PSCs) may indeed more common than predicted by synoptic models, which is expected because of the frequent presence of mountain-induced leewaves. However, it will be of importance to increase the density of independent observations.Key words. Atmospheric composition and structure (aerosols and particles · cloud physics and chemistry) · Meteorology and atmospheric dynamics (mesoscale meteorology)


Sign in / Sign up

Export Citation Format

Share Document