scholarly journals Estimating Satellite and Receiver Differential Code Bias Using Relative GPS Network

2018 ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract. Precise Total Electron Content (TEC) are required to produce accurate spatial and temporal resolution of Global Ionosphere Maps (GIMs). Receivers and Satellites Differential Code Biases (DCBs) are one of the main error sources in estimating precise TEC from Global Positioning Systems (GPS) data. Recently, researchers are interested in developing models and algorithms to compute DCBs of receivers and satellites close to those computed from the Ionosphere Associated Analysis Centers (IAAC). Here we introduce a MATLAB code called Multi Station DCB Estimation (MSDCBE) to calculate satellites and receivers DCBs from GPS data. MSDCBE based on spherical harmonic function and geometry free combination of GPS carrier phase and pseudo-range code observations and weighted least square were applied to solve observation equations, to improve estimation of DCBs values. There are many factors affecting estimated value of DCBs. The first one is the observations weighting function which depending on the satellite elevation angle. The second factor concerned with estimating DCBs using single GPS Station Precise Point Positioning (PPP) or using GPS network. The third factor is the number of GPS receivers in the network. Results from MSDCBE were evaluated and compared with data from IAAC and other codes like M_DCB and ZDDCBE. The results of weighted (MSDCBE) least square shows an improvement for estimated DCBs, where mean differences from CODE less than 0.746 ns. DCBs estimated from GPS network shows a good agreement with IAAC than DCBs estimated from PPP where the mean differences are less than 0.1477 ns and 1.1866 ns, respectively. The mean differences of computed DCBs improved by increasing number of GPS stations in the network.

2019 ◽  
Vol 37 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract. Precise total electron content (TEC) is required to produce accurate spatial and temporal resolution of global ionosphere maps (GIMs). Receivers and satellite differential code biases (DCBs) are one of the main error sources in estimating precise TEC from Global Positioning System (GPS) data. Recently, researchers have been interested in developing models and algorithms to compute DCBs of receivers and satellites close to those computed from the Ionosphere Associated Analysis Centers (IAACs). Here we introduce a MATLAB code called Multi Station DCB Estimation (MSDCBE) to calculate satellite and receiver DCBs from GPS data. MSDCBE based on a spherical harmonic function and a geometry-free combination of GPS carrier-phase, pseudo-range code observations, and weighted least squares was applied to solve observation equations and to improve estimation of DCB values. There are many factors affecting the estimated values of DCBs. The first one is the observation weighting function which depends on the satellite elevation angle. The second factor is concerned with estimating DCBs using a single GPS station using the Zero Difference DCB Estimation (ZDDCBE) code or using the GPS network used by the MSDCBE code. The third factor is the number of GPS receivers in the network. Results from MSDCBE were evaluated and compared with data from IAACs and other codes like M_DCB and ZDDCBE. The results of weighted (MSDCBE) least squares show an improvement for estimated DCBs, where mean differences from the Center for Orbit Determination in Europe (CODE) (University of Bern, Switzerland) are less than 0.746 ns. DCBs estimated from the GPS network show better agreement with IAAC than DCBs estimated from precise point positioning (PPP), where the mean differences are less than 0.1477 and 1.1866 ns, respectively. The mean differences of computed DCBs improved by increasing the number of GPS stations in the network.


2018 ◽  
Author(s):  
Heba Tawfeek ◽  
Ahmed Sedeek ◽  
Mostafa Rabah ◽  
Gamal El-Fiky

Abstract. Ionospheric delay, can be derived from dual frequency GNSS signals, and then converted into the Vertical Total Electron Contents (VTEC) along the signal path. Various models were devised to calculate VTEC. Examples of such models are the polynomial function model and spherical harmonics model. A common hypothesis of these models is that they are constructed based on the assumption that the entire electron content in the ionosphere is concentrated in a single thin shell at a selected height above Earth. The primary goal of the current research to develop an algorithm capable of producing VTEC maps on an hourly basis, using carrier phase observations from dual frequency GPS receiver. The developed algorithm uses a single GPS station (Zero-difference) to map VTEC over a regional area. The carrier phase measurements are much more precise than the code pseudorange measurements, but they contain an ambiguous term. If such ambiguities are fixed, thence the carrier phase measurements become as unambiguous pseudoranges, but accurate at the level of few millimeters. In current research Sequential Least Square Adjustment (SLSA) was considered to fix ambiguity term in carrier phase observations. The proposed algorithm was written using MATLAB and Called (ZDPID). Two GPS stations (ANKR and BSHM) were used from IGS network to evaluate the developed code, VTEC values were estimated over these two stations. Results of the proposed algorithm were compared with the Global Ionosphere Maps (GIMs), which is generally used as a reference. The results show that the mean difference between VTEC from GIM and estimated VTEC at ANKR station is ranging from −2.1 to 3.67 TECU and its RMS is 0.44. The mean difference between VTEC from GIM and estimated VTEC at BSHM station is ranging from −0.29 to 3.65 TECU and its RMS is 0.38. Another three GPS stations in Egypt were used to generate regional ionosphere maps over Nile Delta, Egypt. The mean differences between VTEC from GIM and estimated VTEC at SAID station is ranging from −1.1 to 3.69 TECU and its RMS is 0.37, from −1.29 to 3.27 TECU for HELW station with RMS equal 0.39, and from 0.2 to 4.2 TECU for BORG station with RMS equal 0.46. Therefore, the proposed algorithm can be used to estimate VTEC efficiently.


2004 ◽  
Vol 6 (5) ◽  
pp. 339-354 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. I. Astafieva ◽  
M. B. Gokhberg ◽  
V. M. Lapshin ◽  
V. E. Permyakova ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


Author(s):  
M. Akhoondzadeh

Due to the irrepalable devastations of strong earthquakes, accurate anomaly detection in time series of different precursors for creating a trustworthy early warning system has brought new challenges. In this paper the predictability of Least Square Support Vector Machine (LSSVM) has been investigated by forecasting the GPS-TEC (Total Electron Content) variations around the time and location of Nepal earthquake. In 77 km NW of Kathmandu in Nepal (28.147° N, 84.708° E, depth = 15.0 km) a powerful earthquake of M<sub>w</sub> = 7.8 took place at 06:11:26 UTC on April 25, 2015. For comparing purpose, other two methods including Median and ANN (Artificial Neural Network) have been implemented. All implemented algorithms indicate on striking TEC anomalies 2 days prior to the main shock. Results reveal that LSSVM method is promising for TEC sesimo-ionospheric anomalies detection.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Maria Mehmood ◽  
Sajid Saleem ◽  
Renato Filjar ◽  
Najam Naqvi ◽  
Arslan Ahmed

Many organizations allow GNSS users to access Global Ionosphere Maps (GIMS). However, the TEC estimates derived from GIMs are of insufficient quality to describe small-scale TEC variations over Pakistan. In this paper, the first local TEC map over Pakistan for the year 2019, derived from a regional GPS network, is presented. Spherical harmonics expansion is employed to estimate TEC with the spatial resolution of latitude 0.2° x longitude 0.2° and temporal resolution of 5 minutes. The impact of changing the degree/order of harmonics is assessed and it is determined that harmonic expansion up to 6 degrees is sufficient for estimating accurate TEC map for the region of interest. We have demonstrated that the TEC maps of Pakistan generated by local model conform better to the GIM by Center of Orbit Determination (CODE) (RMS = 5.83) as compared to International Reference Ionosphere (IRI-2016) (RMS = 7.18). We found that the TEC estimated by the local model shows a better correlation to measured TEC; CODE-GIM overestimated TEC, while IRI-2016 underestimates it. Moreover, it was observed that TEC peaks during noon (1100-0100 LT) and Equinox (April). The residuals of local TEC estimates with respect to TEC obtained from CODE- GIM indicate the inaccuracy of CODE-GIM over the region of Pakistan: highest deviation of TEC from local model with respect to CODE –GIM was observed in April (RMS = 8.73) and minimum in October (RMS = 2.78). We have also analyzed the performance of our maps in geomagnetically disturbed days. The research presented in this paper will contribute towards the ionosphere study over Pakistan, where limited research is available currently.


2018 ◽  
Vol 15 (1) ◽  
pp. 51
Author(s):  
Fakhrizal Muttaqien ◽  
Buldan Muslim

A full halo coronal mass ejections (CMEs) are most energetic solar events that eject huge amount of mass and magnetic fields into heliosphere with 360o angular angle. The full halo CME effect on the ionosphere can be determined from the ionospheric total electron content (TEC) derived from GPS data. GPS data from BAKO station in Cibinong, satellite orbital data (brcd files) and intrumental bias data (DCB files) have been used to obtain TEC using GOPI software. Analysis of  the full halo CME data, Dst index, and TEC during October 2003 and February 2014 showed that the full halo CME could cause ionospheric disturbances called ionospheric storms. Magnitude and time delay of the ionospheric storms  depended on the full halo CME speed. For the high-speed full halo CME, the negative ionospheric storm generally occured during recovery phase of the geomagnetic storm. When the initial phase of geomagnetic disturbance with increasing Dst index more than +30 nT, the ionospheric storm occured during main phase of geomagnetic disturbance although the main phase of geomagnetic disturbance did not reach geomagnetic storm condition. ABSTRAKCoronal mass ejection  (CME) halo penuh merupakan peristiwa matahari  berenergi tinggi, yang menyemburkan massa dan medan magnet ke heliosfer dengan sudut angular sebesar 360º. Efek  CME halo penuh pada ionosfer dapat diketahui dari Total Electron Content (TEC). Data GPS BAKO di Cibinong, data orbit satelit (file brcd) dan data bias instrumental (file DCB) dapat digunakan untuk penentuan TEC menggunakan software GOPI. Analisis data CME halo penuh, indeks Dst, dan TEC selama bulan Oktober 2003 dan Februari 2014 menunjukkan bahwa CME halo penuh dapat menimbulkan gangguan ionosfer yang disebut badai ionosfer. Besar dan selang waktu badai ionosfer setelah terjadinya CME, tergantung pada kelajuan CME halo penuh. Untuk CME halo penuh berkelajuan tinggi, badai ionosfer negatif umumnya terjadi pada fase pemulihan badai geomagnet. Jika fase awal gangguan geomagnet diawali dengan peningkatan indeks Dst melebihi +30 nT, maka badai ionosfer dapat terjadi pada fase utama gangguan geomagnet walau gangguan geomagnet setelah  fase awal tidak mencapai kondisi badai geomagnet. 


2019 ◽  
Vol 94 ◽  
pp. 05005 ◽  
Author(s):  
Mokhamad Nur Cahyadi ◽  
Almas Nandityo Rahadyan ◽  
Buldan Muslim

Ionosphere is part of the atmospheric layer located between 50 to 1000 km above the earth's surface which consists of electrons that can influence the propagation of electromagnetic waves in the form of additional time in signal propagation, this depends on Total Electron Content (TEC) in the ionosphere and frequency GPS signal. In high positioning precision with GPS, the effect of the ionosphere must be estimated so that ionospheric correction can be determined to eliminate the influence of the ionosphere on GPS observation. Determination of ionospheric correction can be done by calculating the TEC value using dual frequency GPS data from reference stations or models. In making the TEC model, a polynomial function is used for certain hours. The processing results show that the maximum TEC value occurs at noon at 2:00 p.m. WIB for February 13, 2018 with a value of 35,510 TECU and the minimum TEC value occurs in the morning at 05.00 WIB for February 7, 2018 with a value of 2,138 TECU. The TEC model spatially shows the red color in the area of Surabaya and its surroundings for the highest TEC values during the day around 13.00 WIB to 16.00 WIB.


Sign in / Sign up

Export Citation Format

Share Document