scholarly journals The red sky enigma over Svalbard in December 2002: a model using polar stratospheric clouds

2005 ◽  
Vol 23 (5) ◽  
pp. 1603-1610
Author(s):  
N. D. Lloyd ◽  
D. A. Degenstein ◽  
F. Sigernes ◽  
E. J. Llewellyn ◽  
D. A. Lorentzen

Abstract. An anomalous red glow due to scattered sunlight was observed at Longyearbyen (78° N, 15° E) on 6 December 2002 from 07:30 UT to 13:30 UT when the solar zenith angle varied between 100.7° and 104°. A model for this red sky event using sunlight scattered in a two stage process by Polar Stratospheric Clouds (PSC) at 25km is presented and demonstrated to be feasible. The model requires a significant fraction of the polar vortex, which is cold enough for the formation of ice PSC, to be occupied with PSC with an integrated vertical extinction of approximately 0.037 at 845nm. Given these conditions, the model is able to predict, within an order of magnitude, the spatial distribution of intensities measured by meridional scanning photometers located at Longyearbyen across the visible and near infra-red spectrum. Keywords. Aerosols and particles; Transmission and scattering of radiation; Polar Meteorology

2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2014 ◽  
Vol 7 (12) ◽  
pp. 12691-12717 ◽  
Author(s):  
W. Woiwode ◽  
O. Suminska-Ebersoldt ◽  
H. Oelhaf ◽  
M. Höpfner ◽  
G. V. Belyaev ◽  
...  

Abstract. We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR. For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under the conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the unique opportunity to compare the observations by two different infrared FTS generations directly. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in-situ observations. For the horizontally binned hyperspectral limb-images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to one order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically by factors of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterisation and data processing of GLORIA are subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA.


1994 ◽  
Vol 12 (4) ◽  
pp. 342-354 ◽  
Author(s):  
M. P. Chipperfield

Abstract. A three-dimensional transport model has been used to compare and contrast the extent of processing by polar stratospheric clouds during the northern hemisphere winters of 1991/1992 and 1992/1993. The model has also been used to compare the potential for ozone loss between these two winters. The TOMCAT off-line model is forced using meteorological analyses from the ECMWF. During winter 1992/1993 polar stratospheric clouds (PSCs) in the model persisted into late February/early March, which is much later than in 1991/1992. This persistence of PSCs should have resulted in much more ozone loss in the later winter. Interestingly, however, the extent of PSC processing and ozone loss was greater in January 1992 than January 1993. In January 1992 PSCs occurred at the edge of a distorted polar vortex whilst in January 1993 the PSCs were located at the centre of a much more zonally symmetrical vortex. In March 1993, distortions of the vortex led to the tearing off of vortex air and its mixing into midlatitudes.


2015 ◽  
Vol 8 (6) ◽  
pp. 2509-2520 ◽  
Author(s):  
W. Woiwode ◽  
O. Sumińska-Ebersoldt ◽  
H. Oelhaf ◽  
M. Höpfner ◽  
G. V. Belyaev ◽  
...  

Abstract. We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft). For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the first opportunity to compare the observations by two different infrared FTS generations directly. We validate the GLORIA results with MIPAS-STR based on the lower vertical resolution of MIPAS-STR and compare the vertical resolutions of the instruments derived from their averaging kernels. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in situ observations. For the horizontally binned hyperspectral limb images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to 1 order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically a factor of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterization and data processing of GLORIA are the subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA.


2008 ◽  
Vol 8 (6) ◽  
pp. 18967-18992
Author(s):  
T. von Clarmann ◽  
N. Glatthor ◽  
R. Ruhnke ◽  
G. P. Stiller ◽  
O. Kirner ◽  
...  

Abstract. In the 2002 Antarctic polar vortex enhanced HOCl mixing ratios were detected by the Michelson Interferometer for Passive Atmospheric Sounding both at altitudes of around 35 km, where HOCl abundances are ruled by gas phase chemistry and at around 24 km, which belongs to the altitude domain where heterogeneous chlorine chemistry is relevant. At altitudes of 33 to 40 km, where in midlatitudinal and tropical atmospheres peak HOCl mixing ratios significantly above 0.2 ppbv (in terms of daily mean values) are observed, polar vortex HOCl mixing ratios were found to be around 0.14 ppbv as long as the polar vortex was intact, centered at the pole, and thus received relatively little sunlight. After deformation and displacement of the polar vortex in the course of a major warming, ClO rich vortex air was more exposed to sunlight, where enhanced HOx abundances led to largely increased HOCl mixing ratios (up to 0.3 ppbv), exceeding typical midlatitudinal and tropical amounts significantly. The HOCl increase was preceded by an increase of ClO. Model runs could reproduce these measurements only when the Stimpfle et al. (1979) rate constant for the reaction ClO+HO2→HOCl+O2 was used but not with the current JPL recommendation. At an altitude of 24 km, HOCl mixing ratios of up to 0.15 ppbv were detected. This HOCl enhancement, which is already visible in 18 September data, is attributed to heterogeneous chemistry, which is in agreement with observations of polar stratospheric clouds. Comparison with a model run where no polar stratospheric clouds appeared during the observation period suggests that a significant part of HOCl was generated from ClO rather than directly via heterogeneous reaction. Excess ClO and HOCl in the measurements is attributed to ongoing heterogeneous chemistry which is not reproduced by the model. In the following days, a decay of HOCl abundances was observed and on 11 October, polar vortex mean daytime mixing ratios were only 0.03 ppbv.


2012 ◽  
Vol 12 (8) ◽  
pp. 20007-20032
Author(s):  
M. Kohma ◽  
K. Sato

Abstract. This study statistically examines the simultaneous appearance of polar stratospheric clouds (PSCs) and upper tropospheric clouds (UCs) using satellite lidar observations for five austral winters of 2007–2011. The time series of PSC occurrence in the height range of 15–25 km are significantly correlated with those of UC in 9–11 km. The UCs observed simultaneously with PSCs reported in previous case studies are possibly located around and slightly above the tropopause (~7–8 km) rather than in the troposphere. It is shown that the simultaneous occurrence of PSCs and UCs is frequently associated with blocking highs having large horizontal scales (several thousand kilometers) and tall structure (up to a~height of ~15 km). The longitudinal variation of blocking high frequency accords well with that of the simultaneous occurrence frequency of PSCs and UCs. This coincidence is clearer when the analysis is limited to the latitudinal regions inside the stratospheric polar vortex. This fact suggests that the blocking highs provide a~preferable condition for the simultaneous occurrence of PSCs and UCs. Moreover, PSC compositions are investigated as a~function of relative-longitude of the anticyclones including blocking highs. It is seen that relatively high proportions of STS (super-cooled ternary solutions), Ice, and Mix2 (mixture of nitric acid trihydrate and STS) types are distributed to windward of, around, and to leeward of the anticyclones in the westerly background flows, respectively.


2003 ◽  
Vol 21 (8) ◽  
pp. 1869-1878
Author(s):  
C.-F. Enell ◽  
U. Brändström ◽  
B. Gustavsson ◽  
S. Kirkwood ◽  
K. Stebel ◽  
...  

Abstract. The formation of polar stratospheric clouds (PSCs) is closely related to wave activity on different scales since waves propagating into the stratosphere perturb the temperature profile. We present here a case study of the development of visible PSCs (mother-of-pearl clouds), appearing at the polar vortex edge on 9 January 1997, under-taken by means of ground-based cameras. It is shown that the presence of stratospheric clouds may be detected semi-automatically and that short-term dynamics such as altitude variations can be tracked in three dimensions. The PSC field showed distinct features separated by approximately 20 km, which implies wave-induced temperature variations on that scale. The wave-induced characteristics were further emphasised by the fact that the PSCs moved within a sloping spatial surface. The appearance of visible mother-of-pearl clouds seems to be related to leewave-induced cooling of air masses, where the synoptic temperature has been close to (but not necessarily below) the threshold temperatures for PSC condensation.Key words. Atmospheric composition and structure (aerosols and particles) – Meteorology and atmospheric dynamics (middle atmosphere dynamics; instruments and techniques)


2007 ◽  
Vol 85 (11) ◽  
pp. 1159-1176
Author(s):  
D A Degenstein ◽  
A E Bourassa ◽  
E J Llewellyn ◽  
N D Lloyd

A simple radiative transfer model is developed to calculate the contribution of sea-glint to limb radiance. It is shown that the absolute sea-glint signal peaks between 70° and 80° solar zenith angle. Sea-glint can contribute 10–15% of the total limb radiance at wavelengths greater than 600 nm, which is several times brighter than an equivalent 5% reflecting Lambertian ocean surface. A test case was identified over the Arabian Sea in October 2002 and the model results compared to limb observations from the Optical Spectrograph and Infra-Red Imaging System (OSIRIS) on-board the Odin satellite. PACS Nos.: 94.10.Gb, 93.85.+q, 42.68.Ay, 42.68.Mj


Sign in / Sign up

Export Citation Format

Share Document