scholarly journals Seasonal variation of gravity waves in the Equatorial Middle Atmosphere: results from ISRO's Middle Atmospheric Dynamics (MIDAS) program

2006 ◽  
Vol 24 (10) ◽  
pp. 2471-2480 ◽  
Author(s):  
G. Ramkumar ◽  
T. M. Antonita ◽  
Y. Bhavani Kumar ◽  
H. Venkata Kumar ◽  
D. Narayana Rao

Abstract. Altitude profiles of temperature in the stratospheric and mesopheric region from lidar observations at NARL, Gadanki, India, during December 2002–April 2005, as part of ISRO's Middle Atmospheric Dynamics – "MIDAS (2002–2005)" program are used to study the characteristics of gravity waves and their seasonal variation. Month-to-month variation of the gravity wave activity observed during the period of December 2002–April 2005 show maximum wave activity, with primary peaks in May 2003, August 2004 and March 2005 and secondary peaks in February 2003 and November 2004. This month-to-month variation in gravity wave activity is linked to the variation in the strength of the sources, viz. convection and wind shear, down below at the tropospheric region, estimated from MST radar measurements at the same location. Horizontal wind shear is found to be mostly correlated with wave activity than convection, and sometimes both sources are found to contribute towards the wave activity.

2001 ◽  
Vol 19 (8) ◽  
pp. 1019-1025 ◽  
Author(s):  
M. N. Sasi ◽  
L. Vijayan

Abstract. Turbulent kinetic energy dissipation rates (ε) and eddy diffusion coefficients (Kz) in the tropical mesosphere over Gadanki (13.5° N, 79.2° E), estimated from Doppler widths of MST radar echoes (vertical beam), observed over a 3-year period, show a seasonal variation with a dominant summer maximum. The observed seasonal variation of ε and Kz in the mesosphere is only partially consistent with that of gravity wave activity inferred from mesospheric winds and temperatures measured by rockets for a period of 9 years at Trivandrum (8.5° N, 77° E) (which shows two equinox and one summer maxima) lying close to Gadanki. The summer maximum of mesospheric ε and Kz values appears to be related to the enhanced gravity wave activity over the low-latitude Indian subcontinent during the southwest monsoon period (June – September). Both ε and Kz in the mesosphere over Gadanki show an increase with an increase in height during all seasons. The absolute values of observed ε and Kz in the mesosphere (above ~80 km) does not show significant differences from those reported for high latitudes. Comparison of observed Kz values during the winter above Gadanki with those over Arecibo (18.5° N, 66° W) shows that they are not significantly different from each other above the ~80 km altitude.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; tropical meteorology; wave and tides)


2021 ◽  
Author(s):  
Natalie Kaifler ◽  
Bernd Kaifler ◽  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Tyler Mixa ◽  
...  

<p>During the SOUTHTRAC-GW (Southern hemisphere Transport, Dynamics and Chemistry – Gravity Waves) field campaign, gravity waves above the Southern Andes mountains, the Drake passage and the Antarctic Peninsula were probed with airborne instruments onboard the HALO research aircraft. The Airborne Lidar for Middle Atmosphere research (ALIMA) detected particularly strong mountain waves in excess of 25 K amplitude in cross-mountain legs above the Southern Andes of research flight ST08 on 12 September 2019. The mountain waves propagated well into the mesosphere up to 65 km altitude with possible generation of smaller-scale secondary waves during wave breaking above 65 km. A superposition of mountain waves with horizontal wavelengths in the range 15-200 km and vertical wavelengths 7-24 km dominated the wave field between 18 and 65 km altitude. Vertical wavelengths predicted by the hydrostatic equation and horizontal wind from the European Center for Medium-Range Weather Forecasts’ Integrated Forecasting System are in good agreement with observed vertical wavelengths. We apply wavelet analysis to the measured temperature field along the flight track in order to identify and separate dominant scales, and estimate their relative contributions to the total gravity wave momentum flux as well as the local and zonal-mean gravity wave drag. Furthermore, we compare our observations to results obtained by Fourier ray analysis of the terrain of the Southern Andes. The Fourier model allows the investigation of the 3d-wave field and trapped waves which are not well sampled by the ALIMA instrument because of the relative alignment between the wave fronts and the flight track. These sampling biases are quantified from virtual flights through the model domain at multiple angles and taken into account in the estimation of the total momentum flux derived from ALIMA observations. The combination of high-resolution observations and model data reveals the significance of this and similar mountain wave events in the Southern Andes region for the atmospheric dynamics at ~60° S.</p>


2016 ◽  
Author(s):  
Manfred Ern ◽  
Quang Thai Trinh ◽  
Martin Kaufmann ◽  
Isabell Krisch ◽  
Peter Preusse ◽  
...  

Abstract. Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing. We investigate the boreal winters 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when winds reverse from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.


2016 ◽  
Vol 16 (15) ◽  
pp. 9983-10019 ◽  
Author(s):  
Manfred Ern ◽  
Quang Thai Trinh ◽  
Martin Kaufmann ◽  
Isabell Krisch ◽  
Peter Preusse ◽  
...  

Abstract. Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.


1999 ◽  
Vol 17 (8) ◽  
pp. 1012-1019 ◽  
Author(s):  
G. Dutta ◽  
B. Bapiraju ◽  
P. Balasubrahmanyam ◽  
H. Aleem Basha

Abstract. Wind observations made at Gadanki (13.5°N) by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6) h from the power spectral density (PSD) spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides)


2006 ◽  
Vol 24 (11) ◽  
pp. 2863-2875 ◽  
Author(s):  
A. Serafimovich ◽  
Ch. Zülicke ◽  
P. Hoffmann ◽  
D. Peters ◽  
P. Dalin ◽  
...  

Abstract. We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


2000 ◽  
Vol 18 (10) ◽  
pp. 1316-1324 ◽  
Author(s):  
S.-D. Zhang ◽  
F. Yi ◽  
J.-F. Wang

Abstract. By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2008 ◽  
Vol 26 (11) ◽  
pp. 3253-3268 ◽  
Author(s):  
D. A. Hooper ◽  
J. Nash ◽  
T. Oakley ◽  
M. Turp

Abstract. This paper describes a new signal processing scheme for the 46.5 MHz Doppler Beam Swinging wind-profiling radar at Aberystwyth, in the UK. Although the techniques used are similar to those already described in literature – i.e. the identification of multiple signal components within each spectrum and the use of radial- and time-continuity algorithms for quality-control purposes – it is shown that they must be adapted for the specific meteorological environment above Aberystwyth. In particular they need to take into account the three primary causes of unwanted signals: ground clutter, interference, and Rayleigh scatter from hydrometeors under stratiform precipitation conditions. Attention is also paid to the fact that short-period gravity-wave activity can lead to an invalidation of the fundamental assumption of the wind field remaining stationary over the temporal and spatial scales encompassed by a cycle of observation. Methods of identifying and accounting for such conditions are described. The random measurement error associated with horizontal wind components is estimated to be 3.0–4.0 m s−1 for single cycle data. This reduces to 2.0–3.0 m s−1 for data averaged over 30 min. The random measurement error associated with vertical wind components is estimated to be 0.2–0.3 m s−1. This cannot be reduced by time-averaging as significant natural variability is expected over intervals of just a few minutes under conditions of short-period gravity-wave activity.


Sign in / Sign up

Export Citation Format

Share Document