scholarly journals Earth conductivity structures and their effects on geomagnetic induction in pipelines

2007 ◽  
Vol 25 (1) ◽  
pp. 207-218 ◽  
Author(s):  
P. A. Fernberg ◽  
C. Samson ◽  
D. H. Boteler ◽  
L. Trichtchenko ◽  
P. Larocca

Abstract. Anomalous, large pipe-to-soil potentials (PSP) have been observed along a natural gas pipeline in eastern Ontario, Canada, where there is a major geological contact between the highly resistive rocks of the Precambrian Shield to the west and the more conductive Paleozoic sediments to the east. This study tested the hypothesis that large variations of PSP are related to lateral changes of Earth conductivity under the pipeline. Concurrent and co-located PSP and magnetotelluric (MT) geophysical data were acquired in the study area. Results from the MT survey were used to model PSP variations based on distributed-source transmission line theory, using a spatially-variant surface geoelectric field. Different models were built to investigate the impact of different subsurface features. Good agreement between modelled and observed PSP was reached when impedance peaks related to major changes of subsurface geological conditions were included. The large PSP could therefore be attributed to the presence of resistive intrusive bodies in the upper crust and/or boundaries between tectonic terranes. This study demonstrated that combined PSP-MT investigations are a useful tool in the identification of potential hazards caused by geomagnetically induced currents in pipelines.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Dong ◽  
Zezhong Wang ◽  
Risto Pirjola ◽  
Chunming Liu ◽  
Lianguang Liu

During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM) with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC) in ground-based technical networks, such as power systems.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Bui MANH TUNG ◽  
Nguyen VAN QUANG ◽  
Nguyen PHI HUNG ◽  
Vo NGOC DUNG ◽  
Do HOANG HIEP

The extraction with higher cutting height for extra-thick seam is the new research orientation in longwall caving technology. Due to the increase of top coal thickness and of cutting height which leads to the change of cutting/caving height ratio, the rule of roof failure (including top coal caving) and the distribution of stress around the face alter correspondingly. This paper is based on the geological conditions of face 8102 of Tashan-DaTong mine, employing the numerical model by UDEC2D code, analysing the effect of cutting/caving height ratio on the law of stress distribution ahead of the face. When the ratio of cutting/caving height decreases and the cutting height increases, the results of the research have shown that: (i)- peak stress redistributes further ahead of the face and its value manifestly drops; (ii)- the plastic deformation ahead of face significant increases and the zone of plastic strain also expands. It is therefore concluded that the variation of cutting/caving height ratio results in the redistribution of roof pressure, which contributes to the control of roof failure and face stability.


2021 ◽  
Vol 44 ◽  
pp. 20-23
Author(s):  
I.V. Despirak ◽  
◽  
P.V. Setsko ◽  
Ya.A. Sakharov ◽  
V.N. Selivanov ◽  
...  

Geomagnetically induced currents (GICs), arising both on power lines and on pipelines, may have strong negative impact on the technological networks up to accidents ("blackouts"). Magnetospheric disturbances are one of the factors in the appearance of GICs, however there is no unambiguous relationship between substorm and presence of currents. In this paper, we consider two intense cases of GIC (15March 2012 and 17 March 2013), registered on two different technological networks: 1) on the "Nothern Transit" power line (Vykhodnoy, Revda and Kondopoga stations) located in the auroral zone, 2) on the Finnish natural gas pipeline near Mäntsälä located in the subauroral zone. Both GIC cases are compared with substorm development in the auroral zone, using data from IMAGE magnetometers network and MAIN camera system in Apatity. We found a good correlation between the GIC appearance and variations of geomagnetic indexes: IL – index, which characterized of westward electrojet intensity on the IMAGE meridian and Wp - index, which describes the wave activity of the substorm. Besides, it was shown also a good correlation between GICs and the thin spatio-temporal structure of the substorm development (the appearance and the propagation to the pole of substorm activations), which is appeared both in the magnetic data and in the all sky camera images.


2019 ◽  
Vol 98 (sp1) ◽  
pp. 392
Author(s):  
Zhihui Ma ◽  
Xinlei Pei ◽  
Yunfeng Yi ◽  
Yi Liu ◽  
Xiaotao Zhang

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Zhaoxu Mi ◽  
Fugang Wang ◽  
Zhijie Yang ◽  
Xufeng Li ◽  
Yujie Diao ◽  
...  

CO2 geological storage in deep saline aquifers is an effective way to reduce CO2 emissions. The injection of CO2 inevitably causes a significant pressure increase in reservoirs. When there exist faults which cut through a deep reservoir and shallow aquifer system, there is a risk of the shallow aquifer being impacted by the changes in reservoir hydrodynamic fields. In this paper, a radial model and a 3D model are established by TOUGH2-ECO2N for the reservoir system in the CO2 geological storage demonstration site in the Junggar Basin to analyze the impact of the CO2 injection on the deep reservoir pressure field and the possible influence on the surrounding shallow groundwater sources. According to the results, the influence of CO2 injection on the reservoir pressure field in different periods and different numbers of well is analyzed. The result shows that the number of injection wells has a significant impact on the reservoir pressure field changes. The greater the number of injection wells is, the greater the pressure field changes. However, after the cessation of CO2 injection, the number of injection wells has little impact on the reservoir pressure recovery time. Under the geological conditions of the site and the constant injection pressure, although the CO2 injection has a significant influence on the pressure field in the deep reservoir, the impact on the shallow groundwater source area is minimal and can be neglected and the existing shallow groundwater sources are safe in the given project scenarios.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2818
Author(s):  
Yujun Xu ◽  
Liqiang Ma ◽  
Yihe Yu

To better protect the ecological environment during large scale underground coal mining operations in the northwest of China, the authors have proposed a water-conservation coal mining (WCCM) method. This case study demonstrated the successful application of WCCM in the Yu-Shen mining area. Firstly, by using the analytic hierarchy process (AHP), the influencing factors of WCCM were identified and the identification model with a multilevel structure was developed, to determine the weight of each influencing factor. Based on this, the five maps: overburden thickness contour, stratigraphic structure map, water-rich zoning map of aquifers, aquiclude thickness contour and coal seam thickness contour, were analyzed and determined. This formed the basis for studying WCCM in the mining area. Using the geological conditions of the Yu-Shen mining area, the features of caved zone, water conductive fractured zone (WCFZ) and protective zone were studied. The equations for calculating the height of the “three zones” were proposed. Considering the hydrogeological condition of Yu-Shen mining area, the criteria were put forward to evaluate the impact of coal mining on groundwater, which were then used to determine the distribution of different impact levels. Using strata control theory, the mechanism and applicability of WCCM methods, including height-restricted mining, (partial) backfill mining and narrow strip mining, together with the applicable zone of these methods, were analyzed and identified. Under the guidance of “two zoning” (zoning based on coal mining’s impact level on groundwater and zoning based on applicability of WCCM methods), the WCCM practice was carried out in Yu-Shen mining area. The research findings will provide theoretical and practical instruction for the WCCM in the northwest mining area of China, which is important to reduce the impact of mining on surface and groundwater.


2012 ◽  
Vol 443-444 ◽  
pp. 267-271
Author(s):  
Xu Dong Cheng ◽  
Peng Ju Qin

In this paper, the mechanical behaviors of pipe roof and bolt of shallow and unsymmetrical tunnel in soft rock are analyzed. Through the finite element software Phase2.0, combined with the geological conditions that construction site often appear, the mechanical behaviors of pipe roof and bolt and surrounding rock in the process of horseshoe highway tunnel construction in the condition that surface is soft rock and underground for the bedrock are analyzed. Research results show that: after tunnel excavation in soft rock, surrounding rock near the tunnel is easy to suffer soft-rock large deformation even failure, which needs to timely support;Due to the impact of the unsymmetrical tunnel, the mechanical behaviors of surrounding rock are unsymmetrical, such as the maximum displacement of tunnel around 0.4 m distant from apex of arch ring, the stress is asymmetrical on both sides of the tunnel arch ring etc; In addition, pipe roof can effectively prevent from the displacement of soft rock strata, improve tunnel strength factor, reduce the plastic zone of surrounding rock. This paper provides theoretical basis for the design of pipe roof and bolt.


Author(s):  
James N. Mihell ◽  
David Coleman ◽  
Ryan Sporns

To support an External Corrosion Direct Assessment (ECDA), Indirect Inspections were performed on a 44 km section of NPS 6 extruded polyethylene coated natural gas pipeline. Based on previous investigations of the pipeline, external corrosion defects were known to have occurred at coating holidays. Such holidays can often be detected using current voltage gradient surveys and close interval surveys. Two successive ACVG surveys over the pipeline were preformed. In addition, Close Interval Survey data were considered in order to complete the Indirect Inspection dataset. Statistical analysis methods were developed and employed against the data generated from these surveys so that the following objectives could be met: 1. Assess the reliability of the Indirect Inspection technique in terms of its ability to locate coating holidays and hence, its ability to locate potential corrosion features; and, 2. Assess, in quantitative terms, the reliability of the pipeline in terms of its potential for failure, and quantitatively establish the impact that the Indirect Inspection and dig program had in improving that reliability. In completing the first objective, duplicate survey results were compared with Direct Examination results. The statistical analysis provided a means of estimating technique reliability, which was conservatively estimated at 96%. Subsequent evaluation of factors affecting technique reliability indicated that the density of indications and consistency of applying the Indirect Inspection technique had a bearing on the overall reliability. The second objective was completed by applying the results of the Indirect Inspection reliability study to a statistical analysis of corrosion incidence data and corrosion size distributions that were derived from the Direct Examination data. Pipeline reliability was quantitatively expressed as a function of year of operation and the reliability of the Indirect Inspection technique. For the case examined, the Indirect Inspection techniques that were applied were found to increase pipeline reliability by approximately an order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document