scholarly journals PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

2008 ◽  
Vol 26 (11) ◽  
pp. 3623-3639 ◽  
Author(s):  
R. G. Michell ◽  
K. A. Lynch ◽  
C. J. Heinselman ◽  
H. C. Stenbaek-Nielsen

Abstract. We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR). On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs), the first observed with PFISR. These times corresponded to (a) when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b) when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a) and (b) was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m−3. Broad-band extremely low frequency (BBELF) wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs) and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could have many implications. One specific example of interest is identifying and following the temporal and spatial evolution of regions of potential ion outflow over large spatial and temporal scales using ground-based optical observations.

Solar Physics ◽  
2020 ◽  
Vol 295 (12) ◽  
Author(s):  
Alexandr Kryshtal ◽  
Anna Voitsekhovska ◽  
Oleg Cheremnykh ◽  
Istvan Ballai ◽  
Gary Verth ◽  
...  

AbstractIn this study we discuss the excitation of low-frequency plasma waves in the lower-middle chromosphere region of loop footpoints for the case when the plasma can be considered to be in a pre-flare state. It is shown that among the well-known semi-empirical models of the solar atmosphere, only the VAL (F) model together with a particular set of basic plasma parameters and amplitudes of the electric and magnetic fields supports generation of low-frequency wave instability. Our results show that it is possible to predict the onset of the flare process in the active region by using the interaction of kinetic Alfvén and kinetic ion-acoustic waves, which are solutions of the derived dispersion equation. The VAL (F) model allows situations when the main source of the aforementioned instability can be a sub-Dreicer electric field and drift plasma movements due to presence of spatial inhomogeneities. We also show that the generation of kinetic Alfvén and kinetic ion-acoustic waves can occur both, in plasma with a purely Coulomb conductivity and in the presence of small-scale Bernstein turbulence. The excitation of the small amplitude kinetic waves due to the development of low threshold instability in plasma with relatively low values of the magnetic field strength is also discussed.


2010 ◽  
Vol 28 (3) ◽  
pp. 873-881 ◽  
Author(s):  
M. Samara ◽  
R. G. Michell ◽  
K. Asamura ◽  
M. Hirahara ◽  
D. L. Hampton ◽  
...  

Abstract. We present results from ground-based auroral observations coordinated with the Japanese satellite, Reimei, that took place during the winters of 2006, 2007 and 2008 at Poker Flat, Alaska. Comparable temporal and spatial resolution for the optical and in situ particle data, allowed for investigation of small scale and/or rapidly time-varying auroral structures. Four satellite passes through diffuse auroral structures were identified. The structures within the aurora, whether stationary or time-varying (pulsating aurora), were most closely correlated with the highest energy precipitating electrons measured by these detectors (8 to 12 keV). This relation is found to be consistent across all four examples, revealing that the electron precipitation responsible for these diffuse auroral structures is primarily that of the ≥8 keV electrons.


2008 ◽  
Vol 26 (8) ◽  
pp. 2435-2447 ◽  
Author(s):  
J. M. Sullivan ◽  
M. Lockwood ◽  
B. S. Lanchester ◽  
E. P. Kontar ◽  
N. Ivchenko ◽  
...  

Abstract. Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.


Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 499 ◽  
Author(s):  
Artem Shikhovtsev ◽  
Pavel Kovadlo ◽  
Vladimir Lukin

The paper focuses on the development of the method to estimate the mean characteristics of the atmospheric turbulence. Using an approach based on the shape of the energy spectrum of atmospheric turbulence over a wide range of spatial and temporal scales, the vertical profiles of optical turbulence are calculated. The temporal variability of the vertical profiles of turbulence under different low-frequency atmospheric disturbances is considered.


2002 ◽  
Vol 199 ◽  
pp. 474-483
Author(s):  
Namir E. Kassim ◽  
T. Joseph W. Lazio ◽  
William C. Erickson ◽  
Patrick C. Crane ◽  
R. A. Perley ◽  
...  

Decametric wavelength imaging has been largely neglected in the quest for higher angular resolution because ionospheric structure limited interferometric imaging to short (< 5 km) baselines. The long wavelength (LW, 2—20 m or 15—150 MHz) portion of the electromagnetic spectrum thus remains poorly explored. The NRL-NRAO 74 MHz Very Large Array has demonstrated that self-calibration techniques can remove ionospheric distortions over arbitrarily long baselines. This has inspired the Low Frequency Array (LOFAR)—-a fully electronic, broad-band (15—150 MHz)antenna array which will provide an improvement of 2—3 orders of magnitude in resolution and sensitivity over the state of the art.


2011 ◽  
Vol 7 (S284) ◽  
pp. 411-413 ◽  
Author(s):  
David Sanchez ◽  
Berrie Giebels ◽  
Pascal Fortin ◽  

AbstractMatching the broad-band emission of active galaxies with the predictions of theoretical models can be used to derive constraints on the properties of the emitting region and to probe the physical processes involved. AP Librae is the third low frequency peaked BL Lac (LBL) detected at very high energy (VHE, E>100GeV) by an Atmospheric Cherenkov Telescope; most VHE BL Lacs (34 out of 39) belong to the high-frequency and intermediate-frequency BL Lac classes (HBL and IBL). LBL objects tend to have a higher luminosity with lower peak frequencies than HBLs or IBLs. The characterization of their time-averaged spectral energy distribution is challenging for emission models such as synchrotron self-Compton (SSC) models.


2018 ◽  
Vol 176 ◽  
pp. 259-265 ◽  
Author(s):  
K. Chandra Sekhar Reddy ◽  
D. Karthik ◽  
D. Bhanupriya ◽  
K. Ganesh ◽  
M. Ramakrishna ◽  
...  

1991 ◽  
Vol 69 (2) ◽  
pp. 102-106
Author(s):  
A. Hirose

Analysis, based on a local kinetic dispersion relation in the tokamak magnetic geometry incorporating the ion transit frequency and trapped electrons, indicates that modes with positive frequencies are predominant. Unstable "drift"-type modes can have frequencies well above the diamagnetic frequency. They have been identified as the destabilized ion acoustic mode suffering little ion Landau damping even when [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document