scholarly journals The role of magnetic handedness in magnetic cloud propagation

2010 ◽  
Vol 28 (5) ◽  
pp. 1075-1100 ◽  
Author(s):  
U. Taubenschuss ◽  
N. V. Erkaev ◽  
H. K. Biernat ◽  
C. J. Farrugia ◽  
C. Möstl ◽  
...  

Abstract. We investigate the propagation of magnetic clouds (MCs) through the inner heliosphere using 2.5-D ideal magnetohydrodynamic (MHD) simulations. A numerical solution is obtained on a spherical grid, either in a meridional plane or in an equatorial plane, by using a Roe-type approximate Riemann solver in the frame of a finite volume approach. The structured background solar wind is simulated for a solar activity minimum phase. In the frame of MC propagation, special emphasis is placed on the role of the initial magnetic handedness of the MC's force-free magnetic field because this parameter strongly influences the efficiency of magnetic reconnection between the MC's magnetic field and the interplanetary magnetic field. Magnetic clouds with an axis oriented perpendicular to the equatorial plane develop into an elliptic shape, and the ellipse drifts into azimuthal direction. A new feature seen in our simulations is an additional tilt of the ellipse with respect to the direction of propagation as a direct consequence of magnetic reconnection. During propagation in a meridional plane, the initial circular cross section develops a concave-outward shape. Depending on the initial handedness, the cloud's magnetic field may reconnect along its backside flanks to the ambient interplanetary magnetic field (IMF), thereby losing magnetic flux to the IMF. Such a process in combination with a structured ambient solar wind has never been analyzed in detail before. Furthermore, we address the topics of force-free magnetic field conservation and the development of equatorward flows ahead of a concave-outward shaped MC. Detailed profiles are presented for the radial evolution of magnetoplasma and geometrical parameters. The principal features seen in our MHD simulations are in good agreement with in-situ measurements performed by spacecraft. The 2.5-D studies presented here may serve as a basis under more simple geometrical conditions to understand more complicated effects seen in 3-D simulations.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1673
Author(s):  
Ching-Ming Lai ◽  
Jean-Fu Kiang

The magnetospheric responses to solar wind of Mercury, Earth, Jupiter and Uranus are compared via magnetohydrodynamic (MHD) simulations. The tilt angle of each planetary field and the polarity of solar wind are also considered. Magnetic reconnection is illustrated and explicated with the interaction between the magnetic field distributions of the solar wind and the magnetosphere.


2008 ◽  
Vol 15 (1) ◽  
pp. 53-59 ◽  
Author(s):  
D. Jankovičovà ◽  
Z. Vörös ◽  
J. Šimkanin

Abstract. The importance of space weather and its forecasting is growing as interest in studying geoeffective processes in the Sun – solar wind – magnetosphere – ionosphere coupled system is increasing. In this paper higher order statistical moments of interplanetary magnetic field and geomagnetic SYM-H index fluctuations are compared. The proper description of fluctuations in the solar wind can elucidate important aspects of the geoeffectivity of upstream turbulence and contribute to our understanding of space weather. Our results indicate that quasi-stationary intervals during both quiet and stormy periods have to be investigated in order to find correlations between upstream and geomagnetic conditions. We found that the fourth statistical moment (kurtosis), which was not considered in previous studies, appears to be a new geoeffective parameter. Intermittency of the magnetic turbulence in the solar wind can influence the efficiency of the solar wind – magnetosphere coupling through affecting magnetic reconnection at the Earth's magnetopause.


2017 ◽  
Vol 3 (3) ◽  
pp. 15-19
Author(s):  
Владимир Мишин ◽  
Vladimir Mishin ◽  
Юрий Караваев ◽  
Yuriy Karavaev

From data of three three superstorms we study new features of the saturation process of the polar cap magnetic flux deceleration of its area at strengthening the solar wind (SW). It is shown that the saturation of the polar cap is observed at growth of the SW dynamic pressure and vertical IMF component for both signs. Saturation is realized not only during the passage of interplanetary magnetic clouds, but also at significant enhancement of SW density, when the SW thermal pressure is comparable with the pressure of the interplanetary magnetic field. We assume that at such condiitions the saturation is caused not only by a decrease in the efficiency of reconnection at the dayside magnetopause, but mainly by a finite magnetosphere compressibility –stopping the magnetopause compression due to the rapid Eathward growth of the geomagnetic field, ie, interior magnetospheric structure of the geomagnetic field


2013 ◽  
Vol 31 (10) ◽  
pp. 1853-1866 ◽  
Author(s):  
F. R. Cardoso ◽  
W. D. Gonzalez ◽  
D. G. Sibeck ◽  
M. Kuznetsova ◽  
D. Koga

Abstract. Magnetic reconnection can be a continuous or a transient process. Global magnetohydrodynamics (MHD) simulations are important tools to understand the relevant magnetic reconnection mechanisms and the resulting magnetic structures. We have studied magnetopause reconnection using a global 3-D MHD simulation in which the interplanetary magnetic field (IMF) has been set to large positive By and large negative Bz components, i.e., a south-duskward direction. Flux tubes have been observed even during these constant solar wind conditions. We have focused on the interlinked flux tubes event resulting from time-dependent, patchy and multiple reconnection. At the event onset, two reconnection modes seem to occur simultaneously: a time-dependent, patchy and multiple reconnection for the subsolar region; and, a steady and large-scale reconnection for the regions far from the subsolar site.


2017 ◽  
Vol 44 (23) ◽  
pp. 11,729-11,734 ◽  
Author(s):  
Dong Lin ◽  
Binzheng Zhang ◽  
Wayne A. Scales ◽  
Michael Wiltberger ◽  
C. Robert Clauer ◽  
...  

2019 ◽  
Vol 15 (S354) ◽  
pp. 351-354
Author(s):  
Rodrigo A. Miranda ◽  
Abraham C.-L. Chian ◽  
Erico L. Rempel ◽  
Suzana S. A. Silva

AbstractIn this paper it is shown that rope-rope magnetic reconnection in the solar wind can enhance multifractality in the inertial subrange and drive intermittent magnetic field turbulence. Additionally, it is shown that Lagrangian coherent structures can unveil the transport barriers of magnetic elements in the quiet Sun.


Sign in / Sign up

Export Citation Format

Share Document