scholarly journals Statistical characteristics of PMWE observations by the EISCAT VHF radar

2013 ◽  
Vol 31 (2) ◽  
pp. 359-375 ◽  
Author(s):  
I. Strelnikova ◽  
M. Rapp

Abstract. In the present paper ~ 32.5 h of EISCAT VHF PMWE observations were analyzed with focus on spectral properties like spectral width, doppler shift and spectral shape. Examples from two days of observations with weak and strong polar mesosphere winter echo (PMWE) signals are presented and discussed in detail. These examples reveal a large variability from one case to the other. That is, some features like an observed change of vertical wind direction and spectral broadening can be very prominent in one case, but unnoticeable in the other case. However, for all observations a change of spectral shape inside the layer relative to the incoherent background is noticed.


2010 ◽  
Vol 23 ◽  
pp. 113-117
Author(s):  
A. Orphanou ◽  
K. Nicolaides ◽  
D. Charalambous ◽  
P. Lingis ◽  
S. C. Michaelides

Abstract. In the present study, the monthly statistical characteristics of jetlet and tropopause in relation to the development of thunderstorms over Cyprus are examined. For the needs of the study the 12:00 UTC radiosonde data obtained from the Athalassa station (33.4° E, 35.1° N) for an 11-year period, from 1997 till 2007, were employed. On the basis of this dataset, the height and the temperature of the tropopause, as well as the height, wind direction and speed of the jetlet were estimated. Additionally, the days in the above period with observed thunderstorms were selected and the aforementioned characteristics of the jetlet and tropopause were noted. The two data sets were subsequently contrasted in an attempt to identify possible relations between thunderstorm development, on the one hand, and tropopause and jetlet characteristics, on the other hand.



2004 ◽  
Vol 22 (11) ◽  
pp. 3799-3804 ◽  
Author(s):  
C. J. Pan ◽  
P. B. Rao

Abstract. We report on the field-aligned irregularities observed in the low-latitude sporadic E-layer (Es) with the Gadanki (13.5° N, 79.2° E; geomagnetic latitude 6.3° N) VHF radar. The radar was operated intermittently for 15 days during the summer months in 1998 and 1999, for both daytime and nighttime observation. The total observation periods are 161h for the nighttime and 68h for the daytime. The observations were used to study the percentage of occurrence of the E-region echoes for both daytime and nighttime. The statistical characteristics of the mean radial velocity and spectral width are presented for three cases based on the echo occurrence characteristics and the altitude of observations (from 90 to 140km ranges), namely, the lower E-region daytime (90-110km), the lower E-region nighttime (90-105km) and the upper E-region nighttime (105-140km) echoes. The results are compared with that of Piura, a low-latitude station located at about the same geomagnetic latitude, but to the south of the equator. By comparing the behaviors of the lower E-region radar echoes of the summer months between Gadanki and Piura, we find that the lower altitude echoes below about 100km are rarely reported in Piura but commonly seen in Gadanki. Features of the nighttime echoes observed by these two radars are quite similar but daytime FAI echoes are again seldom detected by Piura.



1997 ◽  
Vol 15 (6) ◽  
pp. 786-796 ◽  
Author(s):  
G. D. Nastrom

Abstract. The spectral width observed by Doppler radars can be due to several effects including the atmospheric turbulence within the radar sample volume plus effects associated with the background flow and the radar geometry and configuration. This study re-examines simple models for the effects due to finite beamwidth and vertical shear of the horizontal wind. Analytic solutions of 1- and 2-dimensional models are presented. Comparisons of the simple 2-dimensional model with numerical integrations of a 3-dimensional model with a symmetrical Gaussian beam show that the 2-dimensional model is usually adequate. The solution of the 2-dimensional model gives a formula that can be applied easily to large data sets. Analysis of the analytic solutions of the 2-dimensional model for off-vertical beams reveals a term that has not been included in mathematical formulas for spectral broadening in the past. This term arises from the simultaneous effects of the changing geometry due to curvature within a finite beamwidth and the vertical wind shear. The magnitude of this effect can be comparable to that of the well-known effects of beam-broadening and wind shear, and since it can have either algebraic sign, it can significantly reduce (or increase) the expected spectral broadening, although under typical conditions it is smaller than the beam-broadening effect. The predictions of this simple model are found to be consistent with observations from the VHF radar at White Sands Missile Range, NM.



2013 ◽  
Vol 718-720 ◽  
pp. 1872-1877 ◽  
Author(s):  
Xu Xi Chang ◽  
Xie Jian Ming ◽  
Jiang Ling Fa ◽  
Chen Shan Xiong

Currently, the soil-aggregate mixture has been widely used in some large-scale site preparation projects, compaction characteristics has been pay more attention by many engineers and researchers. However, systematic research is insufficient on how to choose the filler. Moreover, some industry regulations are different on the requirements about filler. This paper relies on a certain big site preparation projects, discussing statistical characteristics and correlation on the maximal grain size, contents of the coarse grain, gradation and other parameters of soil-aggregate mixture. The results show that the maximal and the median grain size have small discreteness and normal distribution, indicating site filler is easy to reach the requirement; The coefficient of curvature, coefficient of nonuniformity and the coarse grain content have large discreteness, and dont obey normal distribution, indicating the filler has large variability. The median grain size is highly relevant to the coarse grain content; the maximal grain size isnt relevant to the coefficient of nonuniformity, the coefficient of curvature and the coarse grain content. According to the results of correlation analysis, we suggest that the importance order follow by coarse grain content, the maximum grain size and gradation for the control parameters of filler. This research may be significant to other similar projects.



2014 ◽  
Vol 14 (19) ◽  
pp. 10721-10730 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.



2018 ◽  
Vol 615 ◽  
pp. A62 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

Aims. The capability of grid-based techniques to estimate the age together with the convective core overshooting efficiency of stars in detached eclipsing binary systems for main sequence stars has previously been investigated. We have extended this investigation to later evolutionary stages and have evaluated the bias and variability on the recovered age and convective core overshooting parameter accounting for both observational and internal uncertainties. Methods. We considered synthetic binary systems, whose age and overshooting efficiency should be recovered by applying the SCEPtER pipeline to the same grid of models used to build the mock stars. We focus our attention on a binary system composed of a 2.50 M⊙ primary star coupled with a 2.38 M⊙ secondary. To explore different evolutionary scenarios, we performed the estimation at three different times: when the primary is at the end of the central helium burning, when it is at the bottom of the RGB, and when it is in the helium core burning phase. The Monte Carlo simulations have been carried out for two typical values of accuracy on the mass determination, that is, 1% and 0.1%. Results. Adopting typical observational uncertainties, we found that the recovered age and overshooting efficiency are biased towards low values in all three scenarios. For an uncertainty on the masses of 1%, the underestimation is particularly relevant for a primary in the central helium burning stage, reaching − 8.5% in age and − 0.04 (− 25% relative error) in the overshooting parameter β. In the other scenarios, an undervaluation of the age by about 4% occurs. A large variability in the fitted values between Monte Carlo simulations was found: for an individual system calibration, the value of the overshooting parameter can vary from β = 0.0 to β = 0.26. When adopting a 0.1% error on the masses, the biases remain nearly unchanged but the global variability is suppressed by a factor of about two. We also explored the effect of a systematic discrepancy between the artificial systems and the model grid by accounting for an offset in the effective temperature of the stars by ± 150 K. For a mass error of 1% the overshooting parameter is largely biased towards the edges of the explored range, while for the lower mass uncertainty it is basically unconstrained from 0.0 to 0.2. We also evaluate the possibility of individually recovering the β value for both binary stars. We found that this is impossible for a primary near to central hydrogen exhaustion owing to huge biases for the primary star of + 0.14 (90% relative error), while in the other cases the fitted β are consistent, but always biased by about − 0.04 (− 25% relative error). Finally, the possibility to distinguish between models computed with mild overshooting from models with no overshooting was evaluated, resulting in a reassuring power of distinction greater than 80%. However, the scenario with a primary in the central helium burning was a notable exception, showing a power of distinction lower than 5%.



2001 ◽  
Vol 32 ◽  
pp. 159-162 ◽  
Author(s):  
Yukari Takeuchi ◽  
Shun’ichi Kobayashi ◽  
Takeshi Sato ◽  
Kaoru Izumi ◽  
Kenji Kosugi ◽  
...  

AbstractSnowdrifting processes and the wind-velocity profiles around a collector and a blower snow fence were investigated in a cold wind tunnel. The purpose was to ascertain the effect of wind direction on drift control by snow fences. Three different cases were studied for both types of snow fence, and the resultant snowdrifts were compared. In the first case, the snow fence was perpendicular to the wind direction. In the second and third cases, it was tilted by 30° and 45°. When the collector snow fence was tilted, the amounts of snowdrift were much less than when the fence was perpendicular to the wind direction, because the area with low wind velocity was reduced to half behind the tilted fence. On the other hand, the blowing effect of the blower snow fence increased when it was set up at an angle to the wind direction. It is necessary to investigate the position where the blown snow is deposited by the tilted blower snow fence.



2002 ◽  
Vol 23 (3) ◽  
pp. 471-477
Author(s):  
Ngoni Chipere

This book attempts to integrate symbolic processing, in the form of minimalism, with connectionism. Minimalism represents sentences as symbolic structures resulting from a formal process of syntactic derivation. Connectionism, on the other hand, represents sentences as patterns of association between linguistic features. These patterns are said to obey statistical regularities of linguistic usage instead of formal linguistic rules. The authors of the book argue that human sentence processing displays both structural and statistical characteristics and therefore requires the integration of the two views.



2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Liao ◽  
Hao-Chih Lee ◽  
Ge Yang ◽  
Yongjie Jessica Zhang

AbstractThe functionality of biomolecules depends on their flexible structures, which can be characterized by their surface shapes. Tracking the deformation and comparing biomolecular shapes are essential in understanding their mechanisms. In this paper, a new spectral shape correspondence analysis method is introduced for biomolecules based on volumetric eigenfunctions. The eigenfunctions are computed from the joint graph of two given shapes, avoiding the sign flipping and confusion in the order of modes. An initial correspondence is built based on the distribution of a shape diameter, which matches similar surface features in different shapes and guides the eigenfunction computation. A two-step scheme is developed to determine the final correspondence. The first step utilizes volumetric eigenfunctions to correct the assignment of boundary nodes that disobeys the main structures. The second step minimizes the distortion induced by deforming one shape to the other. As a result, a dense point correspondence is constructed between the two given shapes, based on which we approximate and predict the shape deformation, as well as quantitatively measure the detailed shape differences.



Sign in / Sign up

Export Citation Format

Share Document