scholarly journals Incorporating magnetic field observations in wind models of low-mass stars

2014 ◽  
Vol 1 ◽  
pp. 19-22
Author(s):  
A. A. Vidotto

Abstract. Stellar winds of cool, main-sequence stars are very tenuous and difficult to observe. Despite carrying away only a small amount of the stellar mass, they are important for regulating the rotation of the star and, consequently, its activity and magnetism. As it permeates the interplanetary space, the stellar wind interacts with any exoplanet encountered on its way, until it reaches the interstellar medium (ISM). These interactions can result in complex physical processes that depend on the characteristics of the wind. To better constrain the wind characteristics, more realistic wind models that account for factors such as stellar rotation and the complex/diverse observationally-derived stellar magnetic field configurations of cool stars are required. In this paper, I present a three-dimensional model of the wind of cool stars, which adopt as boundary condition observationally-derived magnetic maps. I also discuss how these studies are relevant for, e.g., the characterisation of the interaction between stellar winds and planets/ISM, and the propagation of cosmic rays.


2013 ◽  
Vol 9 (S302) ◽  
pp. 228-236 ◽  
Author(s):  
A. A. Vidotto

AbstractThe great majority of exoplanets discovered so far are orbiting cool, low-mass stars whose properties are relatively similar to the Sun. However, the stellar magnetism of these stars can be significantly different from the solar one, both in topology and intensity. In addition, due to the present-day technology used in exoplanetary searches, most of the currently known exoplanets are found orbiting at extremely close distances to their host stars (< 0.1 au). The dramatic differences in stellar magnetism and orbital radius can make the interplanetary medium of exoplanetary systems remarkably distinct from that of the Solar System. To constrain interactions between exoplanets and their host-star's magnetised winds and to characterise the interplanetary medium that surrounds exoplanets, more realistic stellar wind models, which account for factors such as stellar rotation and the complex stellar magnetic field configurations of cool stars, must be employed. Here, I briefly review the latest progress made in data-driven modelling of magnetised stellar winds. I also show that the interaction of the stellar winds with exoplanets can lead to several observable signatures, some of which that are absent in our own Solar System.



2020 ◽  
Vol 495 (4) ◽  
pp. 3795-3806 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of circumstellar discs that form nearly simultaneously with the formation of the protostar. This is done by modelling the gravitational collapse of a 1 M⊙ gas cloud that is threaded with a magnetic field and imposed with both rotational and turbulent velocities. We investigate magnetic fields that are parallel/antiparallel and perpendicular to the rotation axis, two rotation rates, and four Mach numbers. Disc formation occurs preferentially in the models that include non-ideal MHD where the magnetic field is antiparallel or perpendicular to the rotation axis. This is independent of the initial rotation rate and level of turbulence, suggesting that subsonic turbulence plays a minimal role in influencing the formation of discs. Aside from first core outflows that are influenced by the initial level of turbulence, non-ideal MHD processes are more important than turbulent processes during the formation of discs around low-mass stars.



2019 ◽  
Vol 15 (S354) ◽  
pp. 195-199
Author(s):  
A. Astoul ◽  
S. Mathis ◽  
C. Baruteau ◽  
F. Gallet ◽  
A. Strugarek ◽  
...  

AbstractFor the shortest period exoplanets, star-planet tidal interactions are likely to have played a major role in the ultimate orbital evolution of the planets and on the spin evolution of the host stars. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts the excitation, propagation and dissipation of tidal waves remains open. We have derived the magnetic contribution to the tidal interaction and estimated its amplitude throughout the structural and rotational evolution of low-mass stars (from K to F-type). We find that the star’s magnetic field has little influence on the excitation of tidal waves in nearly circular and coplanar Hot-Jupiter systems, but that it has a major impact on the way waves are dissipated.



1983 ◽  
Vol 102 ◽  
pp. 79-83
Author(s):  
Ake Nordlund

The interaction of photospheric granular convection with a small scale magnetic field has been simulated numerically in a three-dimensional model, with an extension of techniques recently used to simulate field-free granulation. The evolution of an initially homogeneous magnetic field was followed numerically, both in a kinematic (weak-field limit) description, and in a dynamic description, where the back-reaction of the field on the motion through the Lorentz force is taken into account. The simulations illustrate the strong tendency for the field to be swept up and concentrated in the inter-granular lanes because of the topology of the granular flow. The convectively unstable stratification allows field concentration up to a kilogauss field because the temperature reduction in the magnetic plasma.



2019 ◽  
Vol 623 ◽  
pp. L7 ◽  
Author(s):  
L. Haemmerlé ◽  
G. Meynet

Context. Supermassive stars (SMSs) are candidates for being progenitors of supermassive quasars at high redshifts. However, their formation process requires strong mechanisms that would be able to extract the angular momentum of the gas that the SMSs accrete. Aims. We investigate under which conditions the magnetic coupling between an accreting SMS and its winds can remove enough angular momentum for accretion to proceed from a Keplerian disc. Methods. We numerically computed the rotational properties of accreting SMSs that rotate at the ΩΓ-limit and estimated the magnetic field that is required to maintain the rotation velocity at this limit using prescriptions from magnetohydrodynamical simulations of stellar winds. Results. We find that a magnetic field of 10 kG at the stellar surface is required to satisfy the constraints on stellar rotation from the ΩΓ-limit. Conclusions. Magnetic coupling between the envelope of SMSs and their winds could allow for SMS formation by accretion from a Keplerian disc, provided the magnetic field is at the upper end of present-day observed stellar fields. Such fields are consistent with primordial origins.



2012 ◽  
Author(s):  
Stuart A. Heap ◽  
Richard J. Stancliffe ◽  
John C. Lattanzio ◽  
David S. P. Dearborn


2008 ◽  
Vol 4 (S258) ◽  
pp. 383-394 ◽  
Author(s):  
Pierre Demarque

AbstractA brief summary of the history of stellar evolution theory and the use of isochrones is given. The present state of the subject is summarized. The major uncertainties in isochrone construction are considered: chemical abundances and color calibrations, and the treatment of turbulent convection in stellar interior and atmosphere models. The treatment of convection affects the modeling of stellar interiors principally in two ways: convective core overshoot which increases evolutionary lifetimes, and the depth of convection zones which determines theoretical radii. Turbulence also modifies atmospheric structure and dynamics, and the derivation of stellar abundances. The symbiosis of seismic techniques with increasingly more realistic three-dimensional radiation hydrodynamics simulations is transforming the study of late-type stars. The important case of very low mass stars, which are fully convective, is briefly visited.



2011 ◽  
Vol 7 (S286) ◽  
pp. 154-158 ◽  
Author(s):  
J. Warnecke ◽  
P. J. Käpylä ◽  
M. J. Mantere ◽  
A. Brandenburg

AbstractWe present a three-dimensional model of rotating convection combined with a simplified model of a corona in spherical coordinates. The motions in the convection zone generate a large-scale magnetic field which is sporadically ejected into the outer layers above. Our model corona is approximately isothermal, but it includes density stratification due to gravity.



Sign in / Sign up

Export Citation Format

Share Document