scholarly journals Attenuation correction for a high-resolution polarimetric X-band weather radar

2010 ◽  
Vol 8 ◽  
pp. 279-284
Author(s):  
T. Otto ◽  
H. W. J. Russchenberg

Abstract. In 2007, IRCTR (Delft University of Technology) installed a new polarimetric X-band LFMCW radar (IDRA) at the meteorological observation site of Cabauw, The Netherlands. It provides plan position indicators (PPI) at a fixed elevation with a high range resolution of either 3 m or 30 m at a maximum observation range of 1.5 km and 15 km, respectively. IDRA aims to monitor precipitation events for the long-term analysis of the hydrological cycle. Due to the specifications of IDRA, the spatial and temporal variability of a large range of rainfall intensities (from drizzle to heavy convective rain) can be studied. Even though the usual observation range of IDRA is limited to 15 km, attenuation due to precipitation can be large enough to seriously affect the measurements. In this contribution we evaluate the application of a combined method to correct for the specific and the differential attenuation, and in the same vein estimate the parameters of the raindrop-size distribution. The estimated attenuations are compared to a phase constraint attenuation correction method.

2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


2016 ◽  
Vol 33 (2) ◽  
pp. 377-389 ◽  
Author(s):  
Eiichi Yoshikawa ◽  
V. Chandrasekar ◽  
Tomoo Ushio ◽  
Takahiro Matsuda

AbstractA raindrop size distribution (DSD) retrieval method for a weather radar network consisting of several X-band dual-polarization radars is proposed. An iterative maximum likelihood (ML) estimator for DSD retrieval in a single radar was developed in the authors’ previous work, and the proposed algorithm in this paper extends the single-radar retrieval to radar-networked retrieval, where ML solutions in each single-radar node are integrated based on a Bayesian scheme in order to reduce estimation errors and to enhance accuracy. Statistical evaluations of the proposed algorithm were carried out using numerical simulations. The results with eight radar nodes showed that the bias and standard errors are −0.05 and 0.09 in log(Nw); and Nw (mm−1 m−3) and 0.04 and 0.09 in D0 (mm) in an environment with fluctuations in dual-polarization radar measurements (normal distributions with standard deviations of 0.8 dBZ, 0.2 dB, and 1.5° in ZHm, ZDRm, and ΦDPm, respectively). Further error analyses indicated that the estimation accuracy depended on the number of radar nodes, the ranges of varying μ, the raindrop axis ratio model, and the system bias errors in dual-polarization radar measurements.


2014 ◽  
Vol 7 (8) ◽  
pp. 8521-8579 ◽  
Author(s):  
T. H. Raupach ◽  
A. Berne

Abstract. The raindrop size distribution (DSD) quantifies the micro-structure of rainfall and is critical to studying precipitation processes. We present a method to improve the accuracy of DSD measurements from Parsivel disdrometers, using a two-dimensional-video-disdrometer (2DVD) as a reference instrument. Parsivel disdrometers bin recorded raindrops into velocity and equivolume diameter classes, but may mis-estimate the number of drops per class. We define a filter for raw disdrometer measurements to remove particles that are unlikely to be plausible raindrops. In our correction method, drop velocities are corrected with reference to theoretical models of terminal drop velocity. Non-plausible measurements are removed. Lastly, drop concentrations are corrected such that on average the Parsivel concentrations match those recorded by a 2DVD. The correction can be trained on and applied to data from both generations of Parsivel disdrometers. The method was applied to data collected during field campaigns in Mediterranean France, for a network of first and second generation Parsivel disdrometers. We compared the moments of the resulting DSDs to those of a collocated 2DVD, and the resulting DSD-derived rain rates to collocated rain gauges. The correction vastly improved the accuracy of the moments of the Parsivel DSDs, and in the majority of cases the rain rate match with collocated rain gauges was improved.


2016 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific double-normalised DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


2008 ◽  
Vol 9 (3) ◽  
pp. 589-600 ◽  
Author(s):  
Marios N. Anagnostou ◽  
Emmanouil N. Anagnostou ◽  
Jothiram Vivekanandan ◽  
Fred L. Ogden

Abstract In this study the authors evaluate two algorithms, the so-called beta (β) and constrained methods, proposed for retrieving the governing parameters of the “normalized” gamma drop size distribution (DSD) from dual-polarization radar measurements. The β method treats the drop axis ratio as a variable and computes drop shape and DSD parameters from radar reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase shift (KDP). The constrained method assumes that the axis-ratio relation is fixed and computes DSD parameters from ZH, ZDR, and an empirical relation between the DSD slope and shape parameters. The two techniques are evaluated for polarimetric X-band radar observations by comparing retrieved DSD parameters with disdrometer observations and examining simulated radar parameters for consistency. Error effects on the β method and constrained method retrievals are analyzed. The β approach is found to be sensitive to errors in KDP and to be less consistent with observations. Large retrieved β values are found to be associated with large retrieved DSD shape parameters and small median drop diameters. The constrained method provides reasonable rain DSD retrievals that agree better with disdrometer observations.


2019 ◽  
Vol 11 (12) ◽  
pp. 1479 ◽  
Author(s):  
Ji ◽  
Chen ◽  
Li ◽  
Chen ◽  
Xiao ◽  
...  

Fourteen-month precipitation measurements from a second-generation PARSIVEL disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall types are classified and analyzed in the domain of median volume diameter D0 and the normalized intercept parameter Nw. The separation line between convective and stratiform rain is almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing shows distinct seasonal variations in log10Nw–D0 domain. X-band dual-polarization variables are simulated using the T-matrix method to derive radar-based quantitative precipitation estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators using collocated but independent rain gauge observations. This study also combines the advantages of individual estimators based on the thresholds on polarimetric variables. Results show that the blended QPE estimator has better performance than others. The rainfall microphysical analysis presented in this study is expected to facilitate the development of a high-resolution X-band radar network for urban QPE applications.


Sign in / Sign up

Export Citation Format

Share Document