scholarly journals Numerical modelling of the wind over forests: roughness versus canopy drag

2020 ◽  
Vol 17 ◽  
pp. 53-61
Author(s):  
Andrey Sogachev ◽  
Dalibor Cavar ◽  
Mark Kelly ◽  
Ebba Dellwik ◽  
Tobias Klaas ◽  
...  

Abstract. Parameterizing the effect of vertically-distributed vegetation through an effective roughness (z0,eff) – whereby momentum loss through a three-dimensional foliage volume is represented as momentum loss over an area at one vertical level – can facilitate the use of forest data in flow models, to any level of detail, and simultaneously reduce computational cost. Results of numerical experiments and comparison with observations show that a modelling approach based on z0,eff can estimate wind speed and turbulence levels over forested areas, at heights of interest for wind energy applications (∼60 m and higher), but only above flat terrain. Caution must be exercised in the application of such a model to zones of forest edges. Advanced flow models capable of incorporating local (distributed) drag forces are recommended for complex terrain covered by forest.

Author(s):  
Susanne Charlotta Åberg ◽  
Annika Katarina Åberg ◽  
Kirsti Korkka-Niemi

AbstractGreater complexity in three-dimensional (3D) model structures yields more plausible groundwater recharge/discharge patterns, especially in groundwater/surface-water interactions. The construction of a 3D hydrostratigraphic model prior to flow modelling is beneficial when the hydraulic conductivity of geological units varies considerably. A workflow for 3D hydrostratigraphic modelling with Leapfrog Geo and flow modelling with MODFLOW-NWT was developed. It was used to evaluate how the modelling results for groundwater flow and recharge/discharge patterns differ when using simple or more complex hydrostratigraphic models. The workflow was applied to a study site consisting of complex Quaternary sediments underlain by fractured and weathered crystalline bedrock. Increasing the hydrostratigraphic detail appeared to improve the fit between the observed and simulated water table, and created more plausible groundwater flow patterns. Interlayered zones of low and high conductivity disperse the recharge/discharge patterns, increasing the vertical flow component. Groundwater flow was predominantly horizontal in models in which Quaternary sediments and bedrock were simplified as one layer per unit. It appears to be important to define the interlayered low-conductivity units, which can limit groundwater infiltration and also affect groundwater discharge patterns. Explicit modelling with Leapfrog Geo was found to be effective but time-consuming in the generation of scattered and thin-layered strata.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 906
Author(s):  
Ivan Bašták Ďurán ◽  
Martin Köhler ◽  
Astrid Eichhorn-Müller ◽  
Vera Maurer ◽  
Juerg Schmidli ◽  
...  

The single-column mode (SCM) of the ICON (ICOsahedral Nonhydrostatic) modeling framework is presented. The primary purpose of the ICON SCM is to use it as a tool for research, model evaluation and development. Thanks to the simplified geometry of the ICON SCM, various aspects of the ICON model, in particular the model physics, can be studied in a well-controlled environment. Additionally, the ICON SCM has a reduced computational cost and a low data storage demand. The ICON SCM can be utilized for idealized cases—several well-established cases are already included—or for semi-realistic cases based on analyses or model forecasts. As the case setup is defined by a single NetCDF file, new cases can be prepared easily by the modification of this file. We demonstrate the usage of the ICON SCM for different idealized cases such as shallow convection, stratocumulus clouds, and radiative transfer. Additionally, the ICON SCM is tested for a semi-realistic case together with an equivalent three-dimensional setup and the large eddy simulation mode of ICON. Such consistent comparisons across the hierarchy of ICON configurations are very helpful for model development. The ICON SCM will be implemented into the operational ICON model and will serve as an additional tool for advancing the development of the ICON model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yang Yu ◽  
Hongqing Zhu

AbstractDue to the complex morphology and characteristic of retinal vessels, it remains challenging for most of the existing algorithms to accurately detect them. This paper proposes a supervised retinal vessels extraction scheme using constrained-based nonnegative matrix factorization (NMF) and three dimensional (3D) modified attention U-Net architecture. The proposed method detects the retinal vessels by three major steps. First, we perform Gaussian filter and gamma correction on the green channel of retinal images to suppress background noise and adjust the contrast of images. Then, the study develops a new within-class and between-class constrained NMF algorithm to extract neighborhood feature information of every pixel and reduce feature data dimension. By using these constraints, the method can effectively gather similar features within-class and discriminate features between-class to improve feature description ability for each pixel. Next, this study formulates segmentation task as a classification problem and solves it with a more contributing 3D modified attention U-Net as a two-label classifier for reducing computational cost. This proposed network contains an upsampling to raise image resolution before encoding and revert image to its original size with a downsampling after three max-pooling layers. Besides, the attention gate (AG) set in these layers contributes to more accurate segmentation by maintaining details while suppressing noises. Finally, the experimental results on three publicly available datasets DRIVE, STARE, and HRF demonstrate better performance than most existing methods.


Vibration ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 49-63
Author(s):  
Waad Subber ◽  
Sayan Ghosh ◽  
Piyush Pandita ◽  
Yiming Zhang ◽  
Liping Wang

Industrial dynamical systems often exhibit multi-scale responses due to material heterogeneity and complex operation conditions. The smallest length-scale of the systems dynamics controls the numerical resolution required to resolve the embedded physics. In practice however, high numerical resolution is only required in a confined region of the domain where fast dynamics or localized material variability is exhibited, whereas a coarser discretization can be sufficient in the rest majority of the domain. Partitioning the complex dynamical system into smaller easier-to-solve problems based on the localized dynamics and material variability can reduce the overall computational cost. The region of interest can be specified based on the localized features of the solution, user interest, and correlation length of the material properties. For problems where a region of interest is not evident, Bayesian inference can provide a feasible solution. In this work, we employ a Bayesian framework to update the prior knowledge of the localized region of interest using measurements of the system response. Once, the region of interest is identified, the localized uncertainty is propagate forward through the computational domain. We demonstrate our framework using numerical experiments on a three-dimensional elastodynamic problem.


1995 ◽  
Vol 32 (2) ◽  
pp. 323-333 ◽  
Author(s):  
David A. Peters ◽  
Cheng Jian He

1977 ◽  
Vol 99 (3) ◽  
pp. 503-509 ◽  
Author(s):  
B. E. Lee ◽  
B. F. Soliman

A study has been made of the influence of grouping parameters on the mean pressure distributions experienced by three dimensional bluff bodies immersed in a turbulent boundary layer. The range of variable parameters has included group density, group pattern and incident flow type and direction for a simple cuboid element form. The three flow regimes associated with increasing group density are reflected in both the mean drag forces acting on the body and their associated pressure distributions. A comparison of both pressure distributions and velocity profile parameters with established work on two dimensional bodies shows close agreement in identifying these flow regime changes. It is considered that the application of these results may enhance our understanding of some common flow phenomena, including turbulent flow over rough surfaces, building ventilation studies and environmental wind around buildings.


Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2007 ◽  
Vol 34 (9) ◽  
pp. 1038-1047 ◽  
Author(s):  
Musandji Fuamba ◽  
Gilles Brosseau ◽  
Éric Mainville

Optimal management of power plant units is achieved when the global efficiency of the units and the minimization of the total hydraulic head losses through the water transportation systems can be combined. Evaluating these hydraulic head losses appears to be very difficult due to the complexity of the flow conditions through the hydraulic structures. A hydraulic energy based method to determine head losses in the surge chamber has been proposed in this paper, as well as a method to manage the opening of units which would optimize the production of electricity. This method was applied to a case study, and successful results have been obtained showing how the head loss varies in the surge chamber.Key words: hydraulic head losses, power plant unit, surge chamber, unit efficiency, three-dimensional flow conditions, turbulent flow models, computational fluid dynamics.


2001 ◽  
Author(s):  
P. Mathew

Abstract The Oxley Machining Theory, which has been developed over the last 40 years, is presented in this paper. The capability of the model is described with its initial two-dimensional machining approach followed by the extension to the generalised model for three-dimensional machining. The theoretical results from the model are compared with the experimental results to determine the model capability. A brief description of the work associated with the effect of strain hardening at the interface is presented and comparative results are shown. A further extension of the model to intermittent cutting process of reaming is also presented and a comparison with the experimental results indicates the model developed is quite capable of predicting cutting forces for reaming. In explaining the results obtain, the assumptions made are explained and the inputs required. The limitations of the modelling approach are presented. It is pointed out that the Oxley model is a versatile model as long as proper description of the material flow stress properties is presented.


Sign in / Sign up

Export Citation Format

Share Document