scholarly journals Rapid formation of large aggregates during the spring bloom of Kerguelen Island: observations and model comparisons

2014 ◽  
Vol 11 (16) ◽  
pp. 4393-4406 ◽  
Author(s):  
M.-P. Jouandet ◽  
G. A. Jackson ◽  
F. Carlotti ◽  
M. Picheral ◽  
L. Stemmann ◽  
...  

Abstract. While production of aggregates and their subsequent sinking is known to be one pathway for the downward movement of organic matter from the euphotic zone, the rapid transition from non-aggregated to aggregated particles has not been reported previously. We made one vertical profile of particle size distributions (PSD; sizes ranging from 0.052 to several millimeters in equivalent spherical diameter) at pre-bloom stage and seven vertical profiles 3 weeks later over a 48 h period at early bloom stage using the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS2, October–November 2011). In these naturally iron-fertilized waters southeast of Kerguelen Island (Southern Ocean), the total particle numerical abundance increased by more than fourfold within this time period. A massive total volume increase associated with particle size distribution changes was observed over the 48 h survey, showing the rapid formation of large particles and their accumulation at the base of the mixed layer. The results of a one-dimensional particle dynamics model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. The comparison of VT profiles between early bloom stage and pre-bloom stage indicates an increase of particulate export below 200 m when bloom has developed. These results highlight the role of coagulation in forming large particles and triggering carbon export at the early stage of a naturally iron-fertilized bloom, while zooplankton grazing may dominate later in the season. The rapid changes observed illustrate the critical need to measure carbon export flux with high sampling temporal resolution. Our results are the first published in situ observations of the rapid accumulation of marine aggregates and their export and the general agreement of this rapid event with a model of phytoplankton growth and coagulation.

2014 ◽  
Vol 11 (3) ◽  
pp. 4949-4993 ◽  
Author(s):  
M.-P. Jouandet ◽  
G. A. Jackson ◽  
F. Carlotti ◽  
M. Picheral ◽  
L. Stemmann ◽  
...  

Abstract. We recorded vertical profiles of particle size distributions (PSD, sizes ranging from 0.052 to several mm in equivalent spherical diameter) in the natural iron-fertilized bloom southeast of Kerguelen Island (Southern Ocean) from pre-bloom to early bloom stage. PSD were measured by the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS 2, October–November 2011). The total particle numerical abundance was more than 4 fold higher during the early bloom phase compared to pre-bloom conditions as a result of the 2-weeks bloom development. We witnessed the rapid formation of large particles and their accumulation at the base of the mixed layer within a two days period, as indicated by changes in total particle volume (VT) and particle size distribution. The VT profiles suggest sinking of particles from the mixed layer to 200 m, but little export deeper than 200 m during the observation period. The results of a one dimensional particles dynamic model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. Comparison with KEOPS1, which investigated the same area during late summer, and previous iron fertilization experiments highlights physical aggregation as the primary mechanism for large particulate production during the earlier phase of iron fertilized bloom and its export from the surface mixed layer.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Céline Liaud ◽  
Sarah Chouvenc ◽  
Stéphane Le Calvé

The emergence of new super-insulated buildings to reduce energy consumption can lead to a degradation of the indoor air quality. While some studies were carried out to assess the air quality in these super-insulated buildings, they were usually focused on the measurement of gas phase pollutants such as carbon dioxide and volatile organic compounds. This work reports the first measurements of Polycyclic Aromatic Hydrocarbons (PAHs) associated with particles as a function of time and particle size in a low-energy building. The airborne particles were collected indoors and outdoors over three to four days of sampling using two three-stage cascade impactors allowing to sample simultaneously particles with aerodynamic diameter Dae > 10 µm, 2.5 µm < Dae < 10 µm, 1 µm < Dae < 2.5 µm, and Dae < 1 µm. The 16 US-EPA priority PAHs were then extracted and quantified by high-performance liquid chromatography (HPLC) coupled to fluorescence detection. The resulting total particle concentrations were low, in the ranges 3.73 to 9.66 and 0.60 to 8.83 µg m-3 for indoors and outdoors, respectively. Thirteen PAHs were always detected in all the samples. The total PAH concentrations varied between 290 and 415 pg m−3 depending on the particle size, the environment (indoors or outdoors) and the sampling period considered. More interestingly, the temporal variations of individual PAHs highlighted that high molecular weight PAHs were mainly associated to the finest particles and some of them exhibited similar temporal behaviors, suggesting a common emission source. The indoor-to-outdoor concentration ratios of individual PAH were usually found close to or less than 1, except during the event combining rainy conditions and limited indoor ventilation rate.


2017 ◽  
Vol 14 (7) ◽  
pp. 1825-1838 ◽  
Author(s):  
Anja Engel ◽  
Hannes Wagner ◽  
Frédéric A. C. Le Moigne ◽  
Samuel T. Wilson

Abstract. In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (< 5 µmol O2 kg−1) show a lower carbon flux attenuation compared to well-oxygenated waters (> 100 µmol O2 kg−1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (< 60 µmol O2 kg−1); these represent  ∼  100 times more ocean volume globally compared to suboxic waters, but they have less been studied. Particle export fluxes and attenuation coefficients were determined in the eastern tropical North Atlantic (ETNA) using two surface-tethered drifting sediment trap arrays with seven trapping depths located between 100 and 600 m. Data on particulate matter fluxes were fitted to the normalized power function Fz =  F100 (z∕100)−b, with F100 being the flux at a depth (z) of 100 m and b being the attenuation coefficient. Higher b values suggest stronger flux attenuation and are influenced by factors such as faster degradation at higher temperatures. In this study, b values of organic carbon fluxes varied between 0.74 and 0.80 and were in the intermediate range of previous reports, but lower than expected from seawater temperatures within the upper 500 m. During this study, highest b values were determined for fluxes of particulate hydrolyzable amino acids (PHAA), followed by particulate organic phosphorus (POP), nitrogen (PN), carbon (POC), chlorophyll a (Chl a) and transparent exopolymer particles (TEP), pointing to a sequential degradation of organic matter components during sinking. Our study suggests that in addition to O2 concentration, organic matter composition co-determines transfer efficiency through the mesopelagic. The magnitude of future carbon export fluxes may therefore also depend on how organic matter quality in the surface ocean changes under influence of warming, acidification and enhanced stratification.


2000 ◽  
Vol 18 (2) ◽  
pp. 89-102 ◽  
Author(s):  
C. H. JUNG ◽  
S. H. PARK ◽  
K. W. LEE ◽  
M. R. KUHLMAN

2003 ◽  
Vol 18 (4) ◽  
pp. 804-816 ◽  
Author(s):  
Shou-Yi Chang ◽  
Chia-Jung Hsu ◽  
Cher-Hao Hsu ◽  
Su-Jien Lin

Static-gap, single-spark tests were used to investigate the arc erosion behavior of newly developed silicon carbide and alumina particle reinforced silver matrix composites (SiCp/Ag, Al2O3p/Ag). Craters and hills exist on the surfaces of eroded silver matrix composites, and their depths and sizes decrease as the particle content increases and the particle size decreases. Obvious melting, flow, severe splash of molten silver, and the segregation of particles are present on the surfaces of eroded composites containing low volume percents of large particles. Easier silver flow results in smooth surfaces and reduces the total surface areas of the eroded composites containing large particles. The flow and splash of silver decreased with increasing particle content and decreasing particle size, exhibiting a better erosion resistance to single-spark tests. The static-gap, single-spark erosion behavior of silver matrix composites is dominated by the flow and splash of molten composites. A high viscosity of the liquids provides the composites a good arc erosion resistance.


2020 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Johanna Schröder ◽  
Jacob J. K. Kirkensgaard ◽  
Matthias Arenz

In this work, we investigate the stability of four different types of Pt/C fuel cell catalysts upon applying accelerated degradation tests (ADTs) in a gas diffusion electrode (GDE) setup equipped with an anion exchange membrane (AEM). In contrast to previous investigations exposing the catalysts to liquid electrolyte, the GDE setup provides a realistic three-phase boundary of the reactant gas, catalyst and ionomer which enables reactant transport rates close to real fuel cells. Therefore, the GDE setup mimics the degradation of the catalyst under more realistic reaction conditions as compared to conventional electrochemical cells. Combining the determination of the loss in electrochemically active surface area (ECSA) of the Pt/C catalysts via CO stripping measurements with the change in particle size distribution determined by small-angle X-ray scattering (SAXS) measurements, we demonstrate that i) the degradation mechanism depends on the investigated Pt/C catalyst and might indeed be different to the one observed in conventional electrochemical cells, ii) degradation is increased in an oxygen gas atmosphere (as compared to an inert atmosphere), and iii) the observed degradation mechanism depends on the mesoscopic environment of the active phase. The measurements indicate an increased particle growth if small and large particles are immobilized next to each other on the same carbon support flakes as compared to a simple mix of two catalysts with small and large particles, respectively.


Author(s):  
M. A. Taymarov ◽  
R. V. Akhmetova ◽  
S. M. Margulis ◽  
L. I. Kasimova

The difficulties of burning the watered fuel oil used at the TPP as a reserve fuel for boilers are associated with its preparation by heating to reduce viscosity and the choice of a method of spraying with nozzles into the combustion zone. The quality of the preparation of fuel oil for combustion affecting the boiler efficiency is estimated by the length of the flame, the presence of burning large particles of fuel oil, the injection of coke and unburned particles onto screen and other heat-receiving surfaces. One of the ways to prepare fuel oil for combustion is cavitation treatment, which results in an emulsion consisting of fine micronsized particles. Heating of fuel oil particles after the nozzle in contact with the combustion zone is due to the flow of radiation from the burning torch. Therefore, in this article, the values of the flux density from the torch during the combustion of fuel oil are experimentally determined. The influence of particle size on the burning rate of the fuel oil M100 with the different density of the thermal radiation of the flame. It is found that the effect of cavitation treatment of fuel oil on the combustion rate is most significantly manifested in particle sizes less than 10 microns. For this purpose, the use of hydrodynamic cavitators are preferred at high fuel oil consumption rate.


2003 ◽  
Vol 3 (6) ◽  
pp. 5513-5546 ◽  
Author(s):  
M. Ketzel ◽  
P. Wåhlin ◽  
A. Kristensson ◽  
E. Swietlicki ◽  
R. Berkowicz ◽  
...  

Abstract. Particle size distribution (size-range 3–900 nm) and PM10 was measured simultaneously at an urban background station in Copenhagen, a near-city background and a rural location during a period in September-November 2002. The study investigates the contribution from urban versus regional sources of particle number and mass concentration. The total particle number (ToN) and NOx are well correlated at the urban and near-city level and show a distinct diurnal variation, indicating the common traffic source. The average ToN at the three stations differs by a factor of 3. The observed concentrations are 2500 # cm−3, 4500 # cm−3 and 7700 # cm−3 at rural, near-city and urban level, respectively. PM10 and total particle volume (ToV) are well correlated between the three different stations and show similar concentration levels, in average within 30% relative difference, indicating a common source from long-range transport that dominates the concentrations at all locations. Measures to reduce the local urban emissions of NOx and ToN are likely to affect both the street level and urban background concentrations, while for PM10 and ToV only measurable effects at the street level are probable. Taking into account the supposed stronger health effects of ultrafine particles reduction measures should address particle number emissions. The traffic source contributes strongest in the 10–200 nm particle size range. The maximum of the size distribution shifts from about 20–30 nm at kerbside to 50–60 nm at rural level. We also observe particle formation events in the 3–20 nm size range at rural location in the afternoon hours, mainly under conditions with low concentrations of pre-existing aerosol particles. The maximum in the size distribution of the "traffic contribution" seems to be shifted to about 28 nm in the urban location compared to 22 nm at kerbside. Assuming NOx as an inert tracer on urban scale let us estimate that ToN at urban level is reduced by 15–30% compared to kerbside. Particle removal processes, e.g. deposition and coagulation, which are most efficient for smallest particle sizes (<20 nm) and condensational growth are likely mechanisms for the loss of particle number and the shift in particle size.


1993 ◽  
Vol 27 (10) ◽  
pp. 19-34 ◽  
Author(s):  
R. I. Mackie ◽  
R. Bai

The paper examines the importance of size distribution of the influent suspension on the performance of deep bed filters and its significance with regard to modelling. Experiments were carried out under a variety of conditions using suspensions which were identical in every respect apart from their size distribution. The results indicate that the presence of coarse particles does increase the removal of fine particles. Deposition of fine particles leads to a greater headloss than deposition of large particles. Changes in size distribution with time and depth play an important role in determining the behaviour of a filter, and models of both removal and headloss development must take account of this.


Sign in / Sign up

Export Citation Format

Share Document