scholarly journals Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams

2017 ◽  
Vol 14 (11) ◽  
pp. 2831-2849 ◽  
Author(s):  
Rose M. Smith ◽  
Sujay S. Kaushal ◽  
Jake J. Beaulieu ◽  
Michael J. Pennino ◽  
Claire Welty

Abstract. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3− ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3− and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 =  0.78), carbon dioxide (CO2, r2 =  0.78), and methane (CH4, r2 =  0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.

2016 ◽  
Author(s):  
Rose M. Smith ◽  
Sujay S. Kaushal ◽  
Jake J. Beaulieu ◽  
Michael J. Pennino ◽  
Claire Welty

Abstract. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), and watershed management can alter greenhouse gas (GHG) emissions from streams. GHG emissions from streams in agricultural watersheds have been investigated in numerous studies, but less is known about streams draining urban watersheds. We hypothesized that urban infrastructure significantly influences GHG dynamics along the urban watershed continuum, extending from engineered headwater flowpaths to larger streams. GHG concentrations and emissions were measured across streams draining a gradient of stormwater and sanitary infrastructure including: (1) complete stream burial, (2) in-line stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. Infrastructure categories significantly influenced drivers of GHG dynamics including carbon to nitrogen stoichiometry, dissolved oxygen, total dissolved nitrogen (TDN), and water temperature. These variables explained much of the statistical variation in nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) saturation in stream water (r2 = 0.78, 0.78, 0.50 respectively). N2O saturation ratios in urban streams were among the highest reported for flowing waters, ranging from 1.1–47 across all sites and dates. The highest N2O saturation ratios were measured in streams draining nonpoint N sources from septic systems and were strongly correlated with TDN. CO2 was highly correlated with N2O across all sites and dates (r2 = 0.84), and CO2 saturation ratio ranged from 1.1–73. CH4 was always super-saturated with saturation values ranging from 3.0 to 2157. Differences in stormwater and sewer infrastructure influenced water quality, with significant implications for enhancing or minimizing stream CO2, CH4, and N2O emissions.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2013 ◽  
Vol 10 (11) ◽  
pp. 7623-7630 ◽  
Author(s):  
R. R. E. Artz ◽  
S. J. Chapman ◽  
M. Saunders ◽  
C. D. Evans ◽  
R. B. Matthews

Abstract. Yamulki and co-authors address in their recent publication the important issue of net emissions of greenhouse gases (GHGs) from peatlands where land use conversion has taken place. In their case, they studied conversion to forestry versus peatland restoration after a first rotation of plantation forestry. They monitored soil-derived fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) using opaque chamber measurements on planted and unplanted control treatments (with or without drainage), and an unplanted plot within a restored (felled) block on former lowland raised bog. They propose that their measurements of greenhouse gas (GHG) emissions at these sites suggest that the total net GHG emissions, in 100 yr carbon dioxide equivalents, of the restored peat bog would be higher than that of the peat bog with trees. We believe there are a number of issues with the measurement, calculation and comparison of these greenhouse budgets that may invalidate this conclusion.


2008 ◽  
Vol 25 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
C. Paton-Walsh ◽  
R. L. Mittermeier ◽  
W. Bell ◽  
H. Fast ◽  
N. B. Jones ◽  
...  

Abstract The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organized by the Network for the Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3%, and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 787 ◽  
Author(s):  
Enver Çavuşoğlu ◽  
Jean-Loup Rault ◽  
Richard Gates ◽  
Donald C. Lay

The swine industry is often forced to euthanize pigs in the first few weeks of life due to injuries, hernias, or unthriftiness. The majority of pigs are euthanized using carbon dioxide (CO2) gas asphyxiation but concerns as to the humaneness of CO2 are increasing. This study compared the euthanasia of weaned pigs using N2O (N2O; n = 9) or CO2 (n = 9), at 50% and 25% min−1 exchange rate, respectively. In addition, we administered an analgesic prior to euthanasia with CO2 (CO2B) exposure as a third treatment (n = 9) to elucidate behaviors indicative of pain. Pigs in the CO2 and N2O treatments lost posture at similar times (latency of 145.0 ± 17.3 and 162.6 ± 7.0 s respectively, p > 0.10), while the CO2B treatment pigs lost posture the soonest (101.2 ± 4.7 s, p < 0.01). The pigs in the CO2B treatment made more escape attempts than the CO2 or N2O pigs (16.4 ± 4.2, 4.7 ± 1.6, 0.3 ± 0.2, respectively; p < 0.0004). However, pigs in N2O squealed more often than either the CO2 or CO2B pigs (9.0 ± 1.6, 2.8 ± 1.2, 1.3 ± 0.6, respectively, p < 0.001). Given the similar time to loss of posture and shorter time displaying open mouth breathing, N2O may cause less stress to pigs; however, the greater number of squeals performed by these pigs suggests the opposite. It was not apparent that any behavior measured was indicative of pain. In conclusion, N2O applied at a 50% min−1 flow rate can be an alternative to CO2 for pig euthanasia.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 60
Author(s):  
Alexander H. Krichels ◽  
Emina Sipic ◽  
Wendy H. Yang

Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Paulus Sangau ◽  
Junardi Junardi ◽  
Diah Wulandari Rousdy

The existence of Ephemeroptera, Plecoptera and Trichoptera (EPT) macroinvertebrates in water can be used as the indicators to identify the water quality. This study aims to determine the diversity of Macroinvertebrates and physical and chemical factors in water of the Mentuka River. Macroinvertebrate sampling was carried out in February 2018 using random with surber and dip net at three stations spread overthe upstream, middle and downstream of the Mentuka River. The measurements chemicals and physical factors such as water temperature, brightness, current velocity, depth, TDS, TSS, acidity (pH), dissolved oxygen (DO) and free carbon dioxide (CO2), which is carried out together with macroinvertebrates sampling. There are 378 macroinvertebrates individuals belonging to nine genera, namely Polypedilum, Hydropsyche, Anthopotamus, Baetis, Acroneuria, Libellula, Rhyacophila, Parathelphusa and Macrobrachium in Mentuka River. The Ephemeroptera, Baetis is the most abundance with 5.76 ind/m2. Based on the diversity index, the Mentuka was categorized as moderately polluted river.


2010 ◽  
Vol 7 (4) ◽  
pp. 5227-5252 ◽  
Author(s):  
E. Sousa Neto ◽  
J. B. Carmo ◽  
M. Keller ◽  
S. C. Martins ◽  
L. F. Alves ◽  
...  

Abstract. Soils of tropical forests are important to the global budgets of greenhouse gases. The Brazilian Atlantic Forest is the second largest tropical moist forest area of South America, after the vast Amazonian domain. This study aimed to investigate the emissions of Nitrous Oxide (N2O) and Carbon Dioxide (CO2) as well as methane (CH4) emissions and consumptions along an altitudinal transect and the relation between these fluxes and other climatic, edaphic and biological variables (temperature, fine roots, litterfall, and soil moisture). Annual means of N2O flux were 2.6 (±0.5), 0.9 (±0.1), and 0.7 (±0.2) ng N cm−2 h−1 at altitudes 100, 400, and 1000 m, respectively. On an annual basis, soils consumed CH4 at all altitudes with annual means of −1.0 (±0.2), −1.8 (±0.1), and −1.6 (±0.3) mg m−2 d−1 at 100 m, 400 m and 1000 m, respectively. Although not sampled in the hottest and wettest portion of the year because of instrument malfunctions, mean fluxes of CO2 averaged 3.6 (±0.2), 3.5 (±0.3), and 3.1 (±0.3) μmol m−2 s−1 at altitudes 100, 400 and 1000 m, respectively. N2O fluxes were significantly influenced by soil moisture and temperature. Soil-atmosphere exchange of methane responded to changes in soil moisture. Carbon dioxide emissions were strongly influenced by soil temperature. While the temperature gradient observed at our sites is only an imperfect proxy for climate warming, our results suggest that increasing temperatures will result in increased in microbial activity with a consequent increase in soil N2O and CO2 emissions and soil CH4 consumption.


2013 ◽  
Vol 10 (6) ◽  
pp. 10271-10285 ◽  
Author(s):  
R. R. E. Artz ◽  
S. J. Chapman ◽  
M. Saunders ◽  
C. Evans ◽  
R. Matthews

Abstract. Yamulki and co-authors address in their recent publication the important issue of net emissions of greenhouse gases (GHGs) from peatlands where land use conversion has taken place. In their case, they studied conversion to forestry versus peatland restoration after a first rotation of plantation forestry. They monitored soil-derived fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) using chamber measurements on planted and unplanted control treatments (with or without drainage), and an unplanted plot within a restored (felled) block on former lowland raised bog. They propose that their measurements of greenhouse gas (GHG) emissions at these sites suggest that the total net GHG emissions, in 100 yr carbon dioxide equivalents, of the restored peatbog would be higher than that of the peatbog with trees. We believe there are a number of issues with the measurement, calculation and comparison of these greenhouse budgets that may invalidate this conclusion.


Sign in / Sign up

Export Citation Format

Share Document