scholarly journals Estimation of isotope variation of N<sub>2</sub>O during denitrification by <i>Pseudomonas aureofaciens</i> and <i>Pseudomonas chlororaphis</i>: implications for N<sub>2</sub>O source apportionment

2018 ◽  
Vol 15 (12) ◽  
pp. 3873-3882 ◽  
Author(s):  
Joshua A. Haslun ◽  
Nathaniel E. Ostrom ◽  
Eric L. Hegg ◽  
Peggy H. Ostrom

Abstract. Soil microbial processes, stimulated by agricultural fertilization, account for 90 % of anthropogenic nitrous oxide (N2O), the leading source of ozone depletion and a potent greenhouse gas. Efforts to reduce N2O flux commonly focus on reducing fertilization rates. Management of microbial processes responsible for N2O production may also be used to reduce N2O emissions, but this requires knowledge of the prevailing process. To this end, stable isotopes of N2O have been applied to differentiate N2O produced by nitrification and denitrification. To better understand the factors contributing to isotopic variation during denitrification, we characterized the δ15N, δ18O and site preference (SP; the intramolecular distribution of 15N in N2O) of N2O produced during NO3- reduction by Pseudomonas chlororaphis subsp. aureofaciens and P. c. subsp. chlororaphis. The terminal product of denitrification for these two species is N2O because they lack the gene nitrous oxide reductase, which is responsible for the reduction of N2O to N2. In addition to species, treatments included electron donor (citrate and succinate) and electron donor concentration (0.01, 0.1, 1 and 10 mM) as factors. In contrast to the expectation of a Rayleigh model, all treatments exhibited curvilinear behaviour between δ15N or δ18O and the extent of the reaction. The curvilinear behaviour indicates that the fractionation factor changed over the course of the reaction, something that is not unexpected for a multi-step process such as denitrification. Using the derivative of the equation, we estimated that the net isotope effects (η) vary by as much as 100 ‰ over the course of a single reaction, presenting challenges for using δ15N and δ18O as apportionment tools. In contrast, SP for denitrification was not affected by the extent of the reaction, the electron donor source or concentration, although the mean SP of N2O produced by each species differed. Therefore, SP remains a robust indicator of the origin of N2O. To improve apportionment estimates with SP, future studies could evaluate other factors that contribute to the variation in SP.

2017 ◽  
Author(s):  
Joshua A. Haslun ◽  
Nathaniel E. Ostrom ◽  
Eric L. Hegg ◽  
Peggy H. Ostrom

Abstract. Soil microbial processes, stimulated by agricultural fertilization, account for 90 % of anthropogenic nitrous oxide (N2O), the leading source of ozone depletion and a potent greenhouse gas. Efforts to reduce N2O flux commonly focus on reducing fertilization rates. Management of microbial processes responsible for N2O production may also be used to reduce N2O emissions, but this requires knowledge of the prevailing process. To this end, stable isotopes of N2O have been applied to differentiate N2O produced by nitrification and denitrification. To better understand the factors contributing to isotopic variation during denitrification, we characterized the δ15N, δ18O and site preference (SP; the intramolecular distribution of 15N in N2O) of N2O produced during NO3− reduction by Pseudomonas chlororaphis subsp. aureofaciens and P. c. subsp. chlororaphis. In addition to species, treatments included electron donor (citrate and succinate) and electron donor concentration (0.01 mM, 0.1 mM, 1 mM, and 10 mM) as factors. In contrast to the expectation of a Rayleigh model, all treatments exhibited curvilinear behaviour between δ15N or δ18O and [−flnf/(1−f)]. The curvilinear behaviour indicates that the fractionation factor changed over the course of the reaction, something that is not unexpected for a multi-step process such as denitrification. Using the derivative of the equation, we estimated that the net isotope effects (η) vary by as much as 100 ‰ over the course of a single reaction, placing challenges for using δ15N and δ18O as apportionment tools. In contrast, SP for denitrification was not affected by the extent of the reaction, the electron donor source, or concentration, although the mean SP of N2O produced by each species differed. Therefore, SP remains a robust indicator of the origin of N2O. To improve apportionment estimates with SP, future studies could evaluate other factors that contribute to the variation in SP.


2019 ◽  
Author(s):  
Guillaume Humbert ◽  
Mathieu Sébilo ◽  
Justine Fiat ◽  
Longqi Lang ◽  
Ahlem Filali ◽  
...  

Abstract. Nitrous oxide (N2O) emissions by a nitrifying biofilm reactor were investigated with N2O isotopocules. The site preference of N2O (15N-SP) indicated the contribution of producing and consuming pathways in response to changes in oxygenation level (from 0 to 21 % O2 in the gas mix), temperature (from 13.5 to 22.3 °C), and ammonium concentrations (from 6.2 to 62.1 mg N L−1). Nitrite reduction, either nitrifier-denitrification or heterotrophic denitrification, was the main N2O producing pathway under the tested conditions. Nitrite oxidation rates decreased as compared to ammonium oxidation rates at temperatures above 20 °C and sub-optimal oxygen levels, increasing N2O production by the nitrite reduction pathway. Below 20 °C, a difference in temperature sensitivity between hydroxylamine and ammonium oxidation rates is most likely responsible for an increase in the N2O production via the hydroxylamine oxidation pathway (nitrification). A negative correlation between the reaction kinetics and the apparent isotope fractionation was additionally shown from the variations of δ15N and δ18O values of N2O produced from ammonium.


2020 ◽  
Vol 17 (4) ◽  
pp. 979-993
Author(s):  
Guillaume Humbert ◽  
Mathieu Sébilo ◽  
Justine Fiat ◽  
Longqi Lang ◽  
Ahlem Filali ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from a nitrifying biofilm reactor were investigated with N2O isotopocules. The nitrogen isotopomer site preference of N2O (15N-SP) indicated the contribution of producing and consuming pathways in response to changes in oxygenation level (from 0 % to 21 % O2 in the gas mix), temperature (from 13.5 to 22.3 ∘C) and ammonium concentrations (from 6.2 to 62.1 mg N L−1). Nitrite reduction, either nitrifier denitrification or heterotrophic denitrification, was the main N2O-producing pathway under the tested conditions. Difference between oxidative and reductive rates of nitrite consumption was discussed in relation to NO2- concentrations and N2O emissions. Hence, nitrite oxidation rates seem to decrease as compared to ammonium oxidation rates at temperatures above 20 ∘C and under oxygen-depleted atmosphere, increasing N2O production by the nitrite reduction pathway. Below 20 ∘C, a difference in temperature sensitivity between hydroxylamine and ammonium oxidation rates is most likely responsible for an increase in N2O production via the hydroxylamine oxidation pathway (nitrification). A negative correlation between the reaction kinetics and the apparent isotope fractionation was additionally shown from the variations of δ15N and δ18O values of N2O produced from ammonium. The approach and results obtained here, for a nitrifying biofilm reactor under variable environmental conditions, should allow for application and extrapolation of N2O emissions from other systems such as lakes, soils and sediments.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2918
Author(s):  
Jihuan Wang ◽  
Heye R. Bogena ◽  
Harry Vereecken ◽  
Nicolas Brüggemann

Soils are the dominant source of atmospheric nitrous oxide (N2O), especially agricultural soils that experience both waterlogging and intensive nitrogen fertilization. However, soil heterogeneity and the irregular occurrence of hydrological events hamper the prediction of the temporal and spatial dynamics of N2O production and transport in soils. Because soil moisture influences soil redox potential, and as soil N cycling processes are redox-sensitive, redox potential measurements could help us to better understand and predict soil N cycling and N2O emissions. Despite its importance, only a few studies have investigated the control of redox potential on N2Oemission from soils in detail. This study aimed to partition the different microbial processes involved in N2O production (nitrification and denitrification) by using redox measurements combined with isotope analysis at natural abundance and 15N-enriched. To this end, we performed long-term laboratory lysimeter experiments to mimic common agricultural irrigation and fertilization procedures. In addition, we used isotope analysis to characterize the distribution and partitioning of N2O sources and explored the 15N-N2O site preference to further constrain N2O microbial processes. We found that irrigation, saturation, and drainage induced changes in soil redox potential, which were closely related to changes in N2O emission from the soil as well as to changes in the vertical concentration profiles of dissolved N2O, nitrate (NO3−) and ammonium (NH4+). The results showed that the redox potential could be used as an indicator for NH4+, NO3−, and N2O production and consumption processes along the soil profile. For example, after a longer saturation period of unfertilized soil, the NO3− concentration was linearly correlated with the average redox values at the different depths (R2 = 0.81). During the transition from saturation to drainage, but before fertilization, the soil showed an increase in N2O emissions, which originated mainly from nitrification as indicated by the isotopic signatures of N2O (δ15N bulk, δ18O and 15N-N2O site preference). After fertilization, N2O still mainly originated from nitrification at the beginning, also indicated by high redox potential and the increase of dissolved NO3−. Denitrification mainly occurred during the last saturation period, deduced from the simultaneous 15N isotope analysis of NO3− and N2O. Our findings suggest that redox potential measurements provide suitable information for improving the prediction of soil N2O emissions and the distribution of mineral N species along the soil profile under different hydrological and fertilization regimes.


2018 ◽  
Vol 15 (20) ◽  
pp. 6127-6138 ◽  
Author(s):  
Qixing Ji ◽  
Claudia Frey ◽  
Xin Sun ◽  
Melanie Jackson ◽  
Yea-Shine Lee ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas and an ozone depletion agent. Estuaries that are subject to seasonal anoxia are generally regarded as N2O sources. However, insufficient understanding of the environmental controls on N2O production results in large uncertainty about the estuarine contribution to the global N2O budget. Incubation experiments with nitrogen stable isotope tracer were used to investigate the geochemical factors controlling N2O production from denitrification in the Chesapeake Bay, the largest estuary in North America. The highest potential rates of water column N2O production via denitrification (7.5±1.2 nmol-N L−1 h−1) were detected during summer anoxia, during which oxidized nitrogen species (nitrate and nitrite) were absent from the water column. At the top of the anoxic layer, N2O production from denitrification was stimulated by addition of nitrate and nitrite. The relative contribution of nitrate and nitrite to N2O production was positively correlated with the ratio of nitrate to nitrite concentrations. Increased oxygen availability, up to 7 µmol L−1 oxygen, inhibited both N2O production and the reduction of nitrate to nitrite. In spring, high oxygen and low abundance of denitrifying microbes resulted in undetectable N2O production from denitrification. Thus, decreasing the nitrogen input into the Chesapeake Bay has two potential impacts on the N2O production: a lower availability of nitrogen substrates may mitigate short-term N2O emissions during summer anoxia; and, in the long-run (timescale of years), eutrophication will be alleviated and subsequent reoxygenation of the bay will further inhibit N2O production.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


2016 ◽  
Author(s):  
Malte Winther ◽  
David Balslev-Harder ◽  
Søren Christensen ◽  
Anders Priemé ◽  
Bo Elberling ◽  
...  

Abstract. Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere and part of a feed-back loop with climate. N2O is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. The position of the isotope 15N in the linear N = N = O molecule can be distinguished between the central or terminal position (isotopomers of N2O). It has been demonstrated that nitrifying and denitrifying microbes have a different relative preference for the terminal and central position. Therefore, measurements of the site preference in N2O can be used to determine the source of N2O i.e. nitrification or denitrification. Recent instrument development allows for continuous (on the order of days) position dependent δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and P. chlororaphis (only producing N2O). The continuous position dependent measurements reveal the transient pattern (KNO3 to N2O and N2, respectively), which can be compared to previous reported site preference (SP) values. We find bulk isotope effects of −5.5 ‰ ± 0.9 for P. chlororaphis. For P. fluorescens, the bulk isotope effect during production of N2O is −50.4 ‰ ± 9.3 and 8.5 ‰ ± 3.7 during N2O reduction. The values for P. fluorescens are in line with earlier findings, whereas the values for P. chlororaphis are larger than previously published δ15Nbulk measurements from production. The calculations of the SP isotope effect from the measurements of P. chlororaphis result in values of −6.6 ‰ ± 1.8. For P. fluorescens, the calculations results in SP values of −5.7 ‰ ± 5.6 during production of N2O and 2.3 ‰ ± 3.2 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better understanding of denitrifying bacteria and N2O turnover in soils and sediments and ultimately hands-on knowledge on the biotic mechanisms behind greenhouse gas exchange of the Globe.


SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Katelyn A. Congreves ◽  
Trang Phan ◽  
Richard E. Farrell

Abstract. Understanding the production pathways of potent greenhouse gases, such as nitrous oxide (N2O), is essential for accurate flux prediction and for developing effective adaptation and mitigation strategies in response to climate change. Yet there remain surprising gaps in our understanding and precise quantification of the underlying production pathways – such as the relationship between soil moisture and N2O production pathways. A powerful, but arguably underutilized, approach for quantifying the relative contribution of nitrification and denitrification to N2O production involves determining 15N2O isotopomers and 15N site preference (SP) via spectroscopic techniques. Using one such technique, we conducted a short-term incubation where N2O production and 15N2O isotopomers were measured 24 h after soil moisture treatments of 40 % to 105 % water-filled pore space (WFPS) were established for each of three soils that differed in nutrient levels, organic matter, and texture. Relatively low N2O fluxes and high SP values indicted nitrification during dry soil conditions, whereas at higher soil moisture, peak N2O emissions coincided with a sharp decline in SP, indicating denitrification. This pattern supports the classic N2O production curves from nitrification and denitrification as inferred by earlier research; however, our isotopomer data enabled the quantification of source partitioning for either pathway. At soil moisture levels < 53 % WFPS, the fraction of N2O attributed to nitrification (FN) predominated but thereafter decreased rapidly with increasing soil moisture (x), according to FN=3.19-0.041x, until a WFPS of 78 % was reached. Simultaneously, from WFPS of 53 % to 78 %, the fraction of N2O that was attributed to denitrification (FD) was modelled as FD=-2.19+0.041x; at moisture levels of > 78 %, denitrification completely dominated. Clearly, the soil moisture level during transition is a key regulator of N2O production pathways. The presented equations may be helpful for other researchers in estimating N2O source partitioning when soil moisture falls within the transition from nitrification to denitrification.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2010 ◽  
Vol 7 (9) ◽  
pp. 2695-2709 ◽  
Author(s):  
C. H. Frame ◽  
K. L. Casciotti

Abstract. Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2−) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2− (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα−δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.


Sign in / Sign up

Export Citation Format

Share Document