scholarly journals Isotopic evidence for alteration of nitrous oxide emissions and producing pathways' contribution under nitrifying conditions

2020 ◽  
Vol 17 (4) ◽  
pp. 979-993
Author(s):  
Guillaume Humbert ◽  
Mathieu Sébilo ◽  
Justine Fiat ◽  
Longqi Lang ◽  
Ahlem Filali ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from a nitrifying biofilm reactor were investigated with N2O isotopocules. The nitrogen isotopomer site preference of N2O (15N-SP) indicated the contribution of producing and consuming pathways in response to changes in oxygenation level (from 0 % to 21 % O2 in the gas mix), temperature (from 13.5 to 22.3 ∘C) and ammonium concentrations (from 6.2 to 62.1 mg N L−1). Nitrite reduction, either nitrifier denitrification or heterotrophic denitrification, was the main N2O-producing pathway under the tested conditions. Difference between oxidative and reductive rates of nitrite consumption was discussed in relation to NO2- concentrations and N2O emissions. Hence, nitrite oxidation rates seem to decrease as compared to ammonium oxidation rates at temperatures above 20 ∘C and under oxygen-depleted atmosphere, increasing N2O production by the nitrite reduction pathway. Below 20 ∘C, a difference in temperature sensitivity between hydroxylamine and ammonium oxidation rates is most likely responsible for an increase in N2O production via the hydroxylamine oxidation pathway (nitrification). A negative correlation between the reaction kinetics and the apparent isotope fractionation was additionally shown from the variations of δ15N and δ18O values of N2O produced from ammonium. The approach and results obtained here, for a nitrifying biofilm reactor under variable environmental conditions, should allow for application and extrapolation of N2O emissions from other systems such as lakes, soils and sediments.

2019 ◽  
Author(s):  
Guillaume Humbert ◽  
Mathieu Sébilo ◽  
Justine Fiat ◽  
Longqi Lang ◽  
Ahlem Filali ◽  
...  

Abstract. Nitrous oxide (N2O) emissions by a nitrifying biofilm reactor were investigated with N2O isotopocules. The site preference of N2O (15N-SP) indicated the contribution of producing and consuming pathways in response to changes in oxygenation level (from 0 to 21 % O2 in the gas mix), temperature (from 13.5 to 22.3 °C), and ammonium concentrations (from 6.2 to 62.1 mg N L−1). Nitrite reduction, either nitrifier-denitrification or heterotrophic denitrification, was the main N2O producing pathway under the tested conditions. Nitrite oxidation rates decreased as compared to ammonium oxidation rates at temperatures above 20 °C and sub-optimal oxygen levels, increasing N2O production by the nitrite reduction pathway. Below 20 °C, a difference in temperature sensitivity between hydroxylamine and ammonium oxidation rates is most likely responsible for an increase in the N2O production via the hydroxylamine oxidation pathway (nitrification). A negative correlation between the reaction kinetics and the apparent isotope fractionation was additionally shown from the variations of δ15N and δ18O values of N2O produced from ammonium.


2015 ◽  
Vol 73 (4) ◽  
pp. 798-806 ◽  
Author(s):  
E. Lindblom ◽  
M. Arnell ◽  
X. Flores-Alsina ◽  
F. Stenström ◽  
D. J. I. Gustavsson ◽  
...  

The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O) emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases. The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and (2) a moving-bed biofilm reactor. Results show that the calibrated model is partly capable of reproducing the behaviour of N2O as well as the nitritation/nitrification/denitrification dynamics. However, the results emphasize that additional work is required before N2O emissions from sludge liquor treatment plants can be generally predicted with high certainty by simulations. Continued efforts should focus on determining the switching conditions for different N2O formation pathways and, if full-scale data are used, more detailed modelling of the measurement devices might improve the conclusions that can be drawn.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2011 ◽  
Vol 8 (6) ◽  
pp. 11941-11978 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were done over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during the spring 2009 period were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grassland, meadow, and wetland. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil moisture conditions due to the absence of rain during the four previous weeks. Measured cumulated annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1, respectively) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application, confirming the importance of the climatic regime on N2O fluxes.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 730
Author(s):  
Ziyi Feng ◽  
Yongxiang Yu ◽  
Huaiying Yao ◽  
Chaorong Ge

Zinc oxide nanoparticles (ZnO NPs) are widely used and exposed to the soil environment, but their effect on soil nitrous oxide (N2O) emissions remains unclear. In this study, a microcosm experiment was conducted to explore the effects of different ZnO NPs concentrations (0, 100, 500, and 1000 mg kg−1) on N2O emissions and associated functional genes related to N2O amendment with carbon (C) or nitrogen (N) substrates. Partial least squares path modeling (PLS-PM) was used to explore possible pathways controlling N2O emissions induced by ZnO NPs. In the treatment without C or N substrates, 100 and 500 mg kg−1 ZnO NPs did not affect N2O production, but 1000 mg kg−1 ZnO NPs stimulated N2O production. Interestingly, compared with the soils without ZnO NPs, the total N2O emissions in the presence of different ZnO NPs concentrations increased by 2.36–4.85-, 1.51–1.62-, and 6.28–8.35-fold following C, N and both C & N substrate amendments, respectively. Moreover, ZnO NPs increased the functional genes of ammonia-oxidizing bacteria (AOB amoA) and nitrite reductase (nirS) and led to the exhaustion of nitrate but reduced the gene copies of ammonia-oxidizing archaea (AOA amoA). In addition, the redundancy analysis results showed that the AOB amoA and nirS genes were positively correlated with total N2O emissions, and the PLS-PM results showed that ZnO NPs indirectly affected N2O emissions by influencing soil nitrate content, nitrifiers and denitrifiers. Overall, our results showed that ZnO NPs increase N2O emissions by increasing nitrification (AOB amoA) and denitrification (nirS), and we highlight that the exposure of ZnO NPs in agricultural fields probably results in a high risk of N2O emissions when coupled with C and N substrate amendments, contributing to global climate warming.


2007 ◽  
Vol 4 (5) ◽  
pp. 729-741 ◽  
Author(s):  
J. Charpentier ◽  
L. Farias ◽  
N. Yoshida ◽  
N. Boontanon ◽  
P. Raimbault

Abstract. The mechanisms of microbial nitrous oxide (N2O) production in the ocean have been the subject of many discussions in recent years. New isotopomeric tools can further refine our knowledge of N2O sources in natural environments. This study compares hydrographic, N2O concentration, and N2O isotopic and isotopomeric data from three stations along a coast-perpendicular transect in the South Pacific Ocean, extending from the center (Sts. GYR and EGY) of the subtropical oligotrophic gyre (~26° S; 114° W) to the upwelling zone (St. UPX) off the central Chilean coast (~34° S). Although AOU/N2O and NO3− trends support the idea that most of the N2O (mainly from intermediate water (200–600 m)) comes from nitrification, N2O isotopomeric composition (intramolecular distribution of 15N isotopes) expressed as SP (site preference of 15N) shows low values (10 to 12\\permil) that could be attributed to the production through of microbial nitrifier denitrification (reduction of nitrite to N2O mediated by ammonium oxidizers). The coincidence of this SP signal with high – stability layer, where sinking organic particles can accumulate, suggests that N2O could be produced by nitrifier denitrification inside particles. It is postulated that deceleration of particles in the pycnocline can modify the advection - diffusion balance inside particles, allowing the accumulation of nitrite and O2 depletion suitable for nitrifier denitrication. As lateral advection seems to be relatively insignificant in the gyre, in situ nitrifier denitrification could account for 40–50% of the N2O produced in this layer. In contrast, coastal upwelling system is characterized by O2 deficient condition and some N deficit in a eutrophic system. Here, N2O accumulates up to 480% saturation, and isotopic and isotopomer signals show highly complex N2O production processes, which presumably reflect both the effect of nitrification and denitrification at low O2 levels on N2O production, but net N2O consumption by denitrification was not observed.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 60
Author(s):  
Alexander H. Krichels ◽  
Emina Sipic ◽  
Wendy H. Yang

Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 409
Author(s):  
Mohit Masta ◽  
Holar Sepp ◽  
Jaan Pärn ◽  
Kalle Kirsimäe ◽  
Ülo Mander

Nitrous oxide (N2O), a major greenhouse gas and ozone depleter, is emitted from drained organic soils typically developed in floodplains. We investigated the effect of the water table depth and soil oxygen (O2) content on N2O fluxes and their nitrogen isotope composition in a drained floodplain fen in Estonia. Measurements were done at natural water table depth, and we created a temporary anoxic environment by experimental flooding. From the suboxic peat (0.5–6 mg O2/L) N2O emissions peaked at 6 mg O2/L and afterwards decreased with decreasing O2. From the anoxic and oxic peat (0 and >6 mg O2/L, respectively) N2O emissions were low. Under anoxic conditions the δ15N/δ14N ratio of the top 10 cm peat layer was low, gradually decreasing to 30 cm. In the suboxic peat, δ15N/δ14N ratios increased with depth. In samples of peat fluctuating between suboxic and anoxic, the elevated 15N/14N ratios (δ15N = 7–9‰ ambient N2) indicated intensive microbial processing of nitrogen. Low values of site preference (SP; difference between the central and peripheral 15N atoms) and δ18O-N2O in the captured gas samples indicate nitrifier denitrification in the floodplain fen.


2013 ◽  
Vol 68 (1) ◽  
pp. 144-152 ◽  
Author(s):  
Jingjing Yang ◽  
Jozef Trela ◽  
Elzbieta Plaza ◽  
Kåre Tjus

Nitrous oxide (N2O) emissions from wastewater treatment are getting increased attention because their global warming potential is around 300 times that of carbon dioxide. The aim of the study was to measure nitrous oxide emissions from one stage partial nitrification/anammox (Anaerobic Ammonium Oxidation) reactors, where nitrogen is removed in a biological way. The first part of the experimental study was focused on the measurements of nitrous oxide emissions from two pilot scale reactors in the long term; one reactor with intermittent aeration at 25 °C and the other reactor with continuous aeration at 22–23 °C. The second part of the experiment was done to evaluate the influence of different nitrogen loads and aeration strategies, described by the ratio between the non-aerated and aerated phase and the dissolved oxygen concentrations, on nitrous oxide emissions from the process. The study showed that 0.4–2% of the nitrogen load was converted into nitrous oxide from two reactors. With higher nitrogen load, the amount of nitrous oxide emission was also higher. A larger fraction of nitrous oxide was emitted to the gas phase while less was emitted with the liquid effluent. It was also found that nitrous oxide emissions were similar under intermittent and continuous aeration.


Sign in / Sign up

Export Citation Format

Share Document