scholarly journals Global trends in marine nitrate N isotopes from observations and a neural network-based climatology

2019 ◽  
Vol 16 (13) ◽  
pp. 2617-2633 ◽  
Author(s):  
Patrick A. Rafter ◽  
Aaron Bagnell ◽  
Dario Marconi ◽  
Timothy DeVries

Abstract. Nitrate is a critical ingredient for life in the ocean because, as the most abundant form of fixed nitrogen in the ocean, it is an essential nutrient for primary production. The availability of marine nitrate is principally determined by biological processes, each having a distinct influence on the N isotopic composition of nitrate (nitrate δ15N) – a property that informs much of our understanding of the marine N cycle as well as marine ecology, fisheries, and past ocean conditions. However, the sparse spatial distribution of nitrate δ15N observations makes it difficult to apply this useful property in global studies or to facilitate robust model–data comparisons. Here, we use a compilation of published nitrate δ15N measurements (n=12 277) and climatological maps of physical and biogeochemical tracers to create a surface-to-seafloor, 1∘ resolution map of nitrate δ15N using an ensemble of artificial neural networks (EANN). The strong correlation (R2>0.87) and small mean difference (<0.05 ‰) between EANN-estimated and observed nitrate δ15N indicate that the EANN provides a good estimate of climatological nitrate δ15N without a significant bias. The magnitude of observation-model residuals is consistent with the magnitude of seasonal to interannual changes in observed nitrate δ15N that are not captured by our climatological model. The EANN provides a globally resolved map of mean nitrate δ15N for observational and modeling studies of marine biogeochemistry, paleoceanography, and marine ecology.

2019 ◽  
Author(s):  
Patrick A. Rafter ◽  
Aaron Bagnell ◽  
Dario Marconi ◽  
Timothy DeVries

Abstract. Nitrate is a critical ingredient for life in the ocean because, as the most abundant form of fixed nitrogen in the ocean, it is an essential nutrient for primary production. The availability of marine nitrate is principally determined by biological processes, each having a distinct influence on the N isotopic composition of nitrate (nitrate δ15N) – a property that informs much of our understanding of the marine N cycle as well as marine ecology, fisheries, and past ocean conditions. However, the sparse spatial distribution of nitrate δ15N observations makes it difficult to apply this useful property in global studies, or to facilitate robust model-data comparisons. Here, we use a compilation of published nitrate δ15N measurements (n = 12277) and climatological maps of physical and biogeochemical tracers to create a surface-to-seafloor, 1° resolution map of nitrate δ15N using an Ensemble of Artificial Neural Networks (EANN). The strong correlation (R2 > 0.87) and small mean difference (


2017 ◽  
Vol 45 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Mingzi M. Zhang ◽  
Howard C. Hang

Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein–protein and membrane–protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes.


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


Sign in / Sign up

Export Citation Format

Share Document