scholarly journals Small scale variability of geomorphological settings influences mangrove-derived organic matter export in a tropical bay

2016 ◽  
Author(s):  
Geraldina Signa ◽  
Antonio Mazzola ◽  
James Kairo ◽  
Salvatrice Vizzini

Abstract. Organic matter (OM) exchanges between adjacent habitats affect the dynamics and functioning of coastal systems, as well as the role of the different primary producers as energy and nutrient sources in food webs. Elemental (C, N, C : N) and isotope (δ13C) signatures and fatty acid (FA) profiles were used to assess the influence of geomorphological setting in two climatic seasons on the export and fate of mangrove OM across a tidally influenced tropical area, Gazi Bay (Kenya). The main results indicate that tidal transport, along with riverine runoff, play a significant role in the distribution of mangrove organic matter. In particular, a marked spatial variability in the export of organic matter from mangroves to adjacent habitats was due to the different settings of the creeks flowing into the bay. Kinondo Creek acted as a mangrove retention site, where export of mangrove material was limited to the contiguous intertidal area, while Kidogoweni Creek acted as a “flow-through” system, from which mangrove material spread into the bay, especially in the rainy season. This pattern was evident from the isotopic signature of primary producers, which were more 13C-depleted in the Kinondo Creek and nearby, due to the lower dilution of the DIC pool, typically depleted as an effect of intense mangrove mineralization. Despite the trapping efficiency of the seagrass canopy, suspended particulate OM showed the important contribution of mangroves across the whole bay, up to the coral reef, as an effect of the strong ebb tide. Overall, mixing model outcomes and FA profiles indicated a widespread mixed contribution of both allochthonous and autochthonous OM sources across Gazi Bay. Moreover, FAs indicated a notable contribution of brown macroalgae and bacteria in both sediment and particulate pools. These results suggest that ecological connectivity in Gazi Bay is strongly influenced by geomorphological setting, which may have far-reaching consequences for the functioning of the whole ecosystem and the local food webs.

2017 ◽  
Vol 14 (3) ◽  
pp. 617-629 ◽  
Author(s):  
Geraldina Signa ◽  
Antonio Mazzola ◽  
James Kairo ◽  
Salvatrice Vizzini

Abstract. Organic matter (OM) exchanges between adjacent habitats affect the dynamics and functioning of coastal systems, as well as the role of the different primary producers as energy and nutrient sources in food webs. Elemental (C, N, C : N) and isotope (δ13C) signatures and fatty acid (FA) profiles were used to assess the influence of geomorphological setting in two climatic seasons on the export and fate of mangrove OM across a tidally influenced tropical area, Gazi Bay (Kenya). The main results indicate that tidal transport, along with riverine runoff, plays a significant role in the distribution of mangrove organic matter. In particular, a marked spatial variability in the export of organic matter from mangroves to adjacent habitats was due to the different settings of the creeks flowing into the bay. Kinondo Creek acted as a mangrove retention site, where export of mangrove material was limited to the contiguous intertidal area, while Kidogoweni Creek acted as a flow-through system, from which mangrove material spreads into the bay, especially in the rainy season. This pattern was evident from the isotopic signature of primary producers, which were more 13C-depleted in the Kinondo Creek and nearby, due to the lower dilution of the dissolved inorganic carbon (DIC) pool, typically depleted as an effect of intense mangrove mineralisation. Despite the trapping efficiency of the seagrass canopy, suspended particulate OM showed the important contribution of mangroves across the whole bay, up to the coral reef, as an effect of the strong ebb tide. Overall, mixing model outcomes indicated a widespread mixed contribution of both allochthonous and autochthonous OM sources across Gazi Bay. Moreover, FAs indicated a notable contribution of brown macroalgae and bacteria in both sediment and suspended pools. These results suggest that ecological connectivity in Gazi Bay is strongly influenced by geomorphological setting, which may have far-reaching consequences for the functioning of the whole ecosystem and the local food webs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


2016 ◽  
Vol 28 (0) ◽  
Author(s):  
Nilva Brandini ◽  
◽  
Ana Paula de Castro Rodrigues ◽  
Ilene Matanó Abreu ◽  
Luiz Carlos Cotovicz Junior ◽  
...  

Abstract Aim: There are few studies dealing with the biogeochemical processes occurring in small estuaries receiving high sewage loading in tropical regions. The aim of this investigation was to characterize the biogeochemical behavior of nutrients in superficial waters collected at the Iguaçu estuarine system, during specific conditions (neap tide), located at the inner sector of a heavily eutrophicated embayment (Guanabara Bay, SE Brazil). Methods Physical and chemical variables were measured in situ (pH, temperature, conductivity, salinity, total dissolved solids, transparency, dissolved oxygen), whereas suspended particulate matter, chlorophyll a, phaepigments and nutrients (carbon, nitrogen and phosphorus forms) were measured in laboratory across the mesohaline estuarine gradient. Results The Iguaçu River mouth is in a high stage of eutrophication, considering nutrient concentrations, chlorophyll a and transparency of water column. Results indicate a transition from heterotrophic conditions to autotrophic conditions, since the nutrients concentrations showed a decreasing pattern along the saline gradient, while the chlorophyll an increased over the transects. The pH values and chlorophyll : phaeopigments ratios are significantly related to the amount and quality of organic matter contents, especially at transects under strong marine influence. More than 95% of the dissolved and total nitrogen concentrations are represented by NH4+ contributions, which are related to the ammonification of organic matter contents in this region, indicating the existence of untreated sewage loads in this area. Conclusion In this study, the Iguaçu River seemed to contribute with high inputs of nutrients that support important phytoplankton production at the inner regions of the bay related to the CO2 sink and autotrophic metabolism, showing the importance of verifying the biogeochemical behaviors of nutrients in estuarine areas, even in small scale.


2018 ◽  
Vol 15 (9) ◽  
pp. 2629-2647 ◽  
Author(s):  
Yann Lelièvre ◽  
Jozée Sarrazin ◽  
Julien Marticorena ◽  
Gauthier Schaal ◽  
Thomas Day ◽  
...  

Abstract. Hydrothermal vent sites along the Juan de Fuca Ridge in the north-east Pacific host dense populations of Ridgeia piscesae tubeworms that promote habitat heterogeneity and local diversity. A detailed description of the biodiversity and community structure is needed to help understand the ecological processes that underlie the distribution and dynamics of deep-sea vent communities. Here, we assessed the composition, abundance, diversity and trophic structure of six tubeworm samples, corresponding to different successional stages, collected on the Grotto hydrothermal edifice (Main Endeavour Field, Juan de Fuca Ridge) at 2196 m depth. Including R. piscesae, a total of 36 macrofaunal taxa were identified to the species level. Although polychaetes made up the most diverse taxon, faunal densities were dominated by gastropods. Most tubeworm aggregations were numerically dominated by the gastropods Lepetodrilus fucensis and Depressigyra globulus and polychaete Amphisamytha carldarei. The highest diversities were found in tubeworm aggregations characterised by the longest tubes (18.5 ± 3.3 cm). The high biomass of grazers and high resource partitioning at a small scale illustrates the importance of the diversity of free-living microbial communities in the maintenance of food webs. Although symbiont-bearing invertebrates R. piscesae represented a large part of the total biomass, the low number of specialised predators on this potential food source suggests that its primary role lies in community structuring. Vent food webs did not appear to be organised through predator–prey relationships. For example, although trophic structure complexity increased with ecological successional stages, showing a higher number of predators in the last stages, the food web structure itself did not change across assemblages. We suggest that environmental gradients provided by the biogenic structure of tubeworm bushes generate a multitude of ecological niches and contribute to the partitioning of nutritional resources, releasing communities from competition pressure for resources and thus allowing species to coexist.


2018 ◽  
Vol 612 ◽  
pp. 636-648 ◽  
Author(s):  
Hendryk Czech ◽  
Toni Miersch ◽  
Jürgen Orasche ◽  
Gülcin Abbaszade ◽  
Olli Sippula ◽  
...  

2004 ◽  
Vol 61 (8) ◽  
pp. 1493-1502 ◽  
Author(s):  
R K Johnson ◽  
M L Ostrofsky

Sediment concentrations of total and available nitrogen (N), phosphorus (P), and potassium (K) and organic matter from the littoral zone of Lake Pleasant, Pennsylvania, were highly variable. Only organic matter and total N were correlated with depth, however. This result suggests the existence of more complex environmental gradients than the prevailing paradigm of monotonic changes in sediment characteristics with increasing depth. The spatial heterogeneity of submersed aquatic plant communities was significantly correlated with depth, and available N and P. Canonical correspondence analysis demonstrated that these three factors explained 38% of the variance in community structure. Other sediment characteristics (available K, organic matter, and total N, P and K) were not significant by themselves, but all variables combined explained 63% of community-structure variance. Cluster analysis identified species or groups of species typical of endpoints on the depth versus nutrient axes. Myriophyllum exalbescens was typical of deep sites with relatively nutrient-rich sediments, whereas deep nutrient-poor sites were dominated by Vallisneria americana and Megalodonta beckii. Shallow nutrient-rich sites were dominated by several species of Potamogeton and Elodea canadensis, and shallow nutrient-poor sites were dominated by Heteranthera dubia and Najas flexilis. These results demonstrate the importance of sediment characteristics in determining macrophytes' community structure within lakes.


2019 ◽  
Vol 67 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Andrea Rücker ◽  
Massimiliano Zappa ◽  
Stefan Boss ◽  
Jana von Freyberg

Abstract The contribution of snow meltwater to catchment streamflow can be quantified through hydrograph separation analyses for which stable water isotopes (18O, 2H) are used as environmental tracers. For this, the spatial and temporal variability of the isotopic composition of meltwater needs to be captured by the sampling method. This study compares an optimized snowmelt lysimeter system and an unheated precipitation collector with focus on their ability to capture snowmelt rates and the isotopic composition of snowmelt. The snowmelt lysimeter system consists of three individual unenclosed lysimeters at ground level with a surface of 0.14 m2 each. The unheated precipitation collector consists of a 30 cm-long, extended funnel with its orifice at 2.3 m above ground. Daily snowmelt samples were collected with both systems during two snowfall-snowmelt periods in 2016. The snowmelt lysimeter system provided more accurate measurements of natural melt rates and allowed for capturing the small-scale variability of snowmelt process at the plot scale, such as lateral meltwater flow from the surrounding snowpack. Because of the restricted volume of the extended funnel, daily melt rates from the unheated precipitation collector were up to 43% smaller compared to the snowmelt lysimeter system. Overall, both snowmelt collection methods captured the general temporal evolution of the isotopic signature in snowmelt.


2021 ◽  
Author(s):  
Glenn A. Hyndes ◽  
Emma Berdan ◽  
Cristian Duarte ◽  
Jenifer E. Dugan ◽  
Kyle A. Emery ◽  
...  

Sandy beaches are iconic interfaces that functionally link the ocean with the land by the flow of marine organic matter. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examime the spatial scaling of the influence of these processes across the broader seascape and landscape, and identify key gaps in our knowledge to guide future research directions and priorities. Globally, large quantities of detrital kelp and seagrass can flow into sandy beach ecosystems, where microbial decomposers and animals remineralise and consume the imported organic matter. The supply and retention of wrack are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack break-down, and these can return to coastal waters in surface flows (swash) and the aquifier discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy beach ecosystems underpin a range of ecosystem functions and services, these can be at variance with aesthetic perceptions resulting in widespread activities, such ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects on food webs and biodiversity. Similarly, future sea-level rise and stormier seas are likely to profoundly alter the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


2014 ◽  
Vol 1073-1076 ◽  
pp. 619-627
Author(s):  
Fang She Yang ◽  
Shu Zhen Su ◽  
Juan Juan Zhang ◽  
Ci Fen Bi

In this paper, based on geostatistics and GIS techniques, spatial variation characteristics of soil organic matter (acronym: SOM) on a small scale were analyzed and discussed in east-one-branch gully (EG1) bed with the seabuckthorn flexible dam and the contrastive gully bed (which is non-vegetated any vegetation) located in zhun-ge-er county, Erdos, inner Mongolia, which belongs to the typical Pisha Sandstone area. The results show that the seabuckthorn can significantly increase SOM in the small catchment gully bed in the Pisha sandstone area, and the mean SOM content in gully bed with the seabuckthorn flexible dam is approximate 1.75 times that in the contrastive gully. Apparent spatial variation characteristics of SOM were found in the gully with the seabuckthorn flexible dam and the contrastive gully bed, moreover, the medium spatial autocorrelation of SOM was detected in gully bed with the seabuckthorn flexible dam, and the spatial variation of SOM was together led to by the structural and random variation at 1-6.5 m range, and of which the random variation accounts for 40%. Additional, the spatial autocorrelation of SOM in the contrastive gully bed is higher, the spatial variation of SOM was dominantly brought about by the structural variation at 1-4.5 m range, and of which the random variation accounts for 37%. Furthermore, the fractal dimension values reveal that dependence of SOM of the gully bed with the seabuckthorn flexible dam on spatial is weaker than that of the contrastive gully bed. It is judged that the seabuckthorn has an obvious effect on spatial distribution patterns and heterogeneity of SOM on a small scale.


2003 ◽  
Vol 33 (12) ◽  
pp. 2509-2513 ◽  
Author(s):  
Brian W Benscoter ◽  
R Kelman Wieder

Fire directly releases carbon (C) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal, western Canada, releasing 4.7 ± 0.6 Tg C to the atmosphere via direct combustion. We quantified within-site variation in organic matter lost via combustion in a bog peatland in association with the 116 000-ha Chisholm, Alberta, fire in 2001. We hypothesized that for peatlands with considerable small-scale microtopography (bogs and treed fens), hummocks will burn less than hollows. We found that hollows exhibit more combustion than hummocks, releasing nearly twice as much C to the atmosphere. Our results suggest that spatial variability in species composition and site hydrology within a landform and across a landscape could contribute to considerable spatial variation in the amounts of C released via combustion during peatland fire, although the magnitude of this variation may be dependent on fire severity.


Sign in / Sign up

Export Citation Format

Share Document