scholarly journals Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

2017 ◽  
Author(s):  
Julian Helfenstein ◽  
Jannes Jegminat ◽  
Timothy I. McLaren ◽  
Emmanuel Frossard

Abstract. The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a widespread form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also for that of 18 long-term P fertilizer field experiments. Analysis of the global compilation dataset revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate buffering capacity. Our study thus highlights the potential of Km for future studies – not only for P, but also for other environmentally-relevant, strongly-sorbing elements with radioisotopes such as zinc, cadmium, nickel, arsenic, or uranium.

2018 ◽  
Vol 15 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Julian Helfenstein ◽  
Jannes Jegminat ◽  
Timothy I. McLaren ◽  
Emmanuel Frossard

Abstract. The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil–solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.


2009 ◽  
Vol 55 (No. 7) ◽  
pp. 267-272 ◽  
Author(s):  
M. Kulhánek ◽  
J. Balík ◽  
J. Černý ◽  
V. Vaněk

Soil samples (from Czech and German long-term field experiments) were used to estimate different soil phosphorus (P) fractions. More than 200 topsoil (0–30 cm) samples from different fertilizing treatments were taken. These were analyzed for P in soil solution (P<sub>CaCl2</sub>) [0.01M CaCl<sub>2</sub> extract], exchangeable sorbed P (P<sub>ex</sub>) [anion exchange (AE) membranes] and bioavailable P [Doppel-Lactat and Mehlich 3 (P<sub>DL</sub> and P<sub>M3</sub>)]. Other fractions analyzed were total inorganic (P<sub>in</sub>), total (P<sub>M-tot</sub>) and organic (P<sub>org</sub>) P [fractionation after Marks], P sorbed on Fe and Al (P<sub>FeAl</sub>) [fractionation after Schwertmann] and residual P (P<sub>ar</sub>) [aqua regia extract]. Comparison of medians appeared to be better for evaluating extraction abilities. Phosphorus fractions were in the following order: (P<sub>ar</sub> = 100%); P<sub>CaCl2</sub> (0.2%) < P<sub>ex</sub> (9%) < P<sub>DL</sub> (10%) < P<sub>M3 </sub> (16%) < P<sub>in</sub> (24%) < P<sub>org</sub> (37%) < P<sub>FeAl</sub> (55%) < P<sub>M-tot</sub> (59%). Low amounts of P<sub>in</sub>, P<sub>org</sub> and P<sub>M-tot</sub> did not verify the applicability of the Marks’ fractionation for the set of studied soils. Close correlations at <I>P</I> ≤ 0.001 were found for all methods for estimating the fractions of bioavailable phosphates (P<sub>CaCl2</sub>, P<sub>ex</sub>, P<sub>DL</sub> and P<sub>M3</sub>). Statistically significant relations were observed between P<sub>in</sub> with P<sub>ar</sub>, P<sub>M-tot</sub> and P<sub>FeAl</sub>.


Author(s):  
Ziwen Xu ◽  
Shiquan Lv ◽  
Shuxiang Hu ◽  
Liang Chao ◽  
Fangxu Rong ◽  
...  

Paddy soils are globally distributed and saturated with water long term, which is different from most terrestrial ecosystems. To better understand the environmental risks of antibiotics in paddy soils, this study chose sulfadiazine (SDZ) as a typical antibiotic. We investigated its adsorption behavior and the influence of soil solution properties, such as pH conditions, dissolved organic carbon (DOC), ionic concentrations (IC), and the co-existence of Cu2+. The results indicated that (1) changes in soil solution pH and IC lower the adsorption of SDZ in paddy soils. (2) Increase of DOC facilitated the adsorption of SDZ in paddy soils. (3) Cu2+ co-existence increased the adsorption of SDZ on organic components, but decreased the adsorption capacity of clay soil for SDZ. (4) Further FTIR and SEM analyses indicated that complexation may not be the only form of Cu2+ and SDZ co-adsorption in paddy soils. Based on the above results, it can be concluded that soil solution properties and co-existent cations determine the sorption behavior of SDZ in paddy soils.


1997 ◽  
Vol 352 (1356) ◽  
pp. 997-1010 ◽  
Author(s):  
R. Lal

Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause–effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long–term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively–active gases from terrestrial ecosystems to the atmosphere. Data from long–term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 903E-903
Author(s):  
Kent D. Kobayashi ◽  
H.C. Bittenbender ◽  
N.V. Hue

Most soils of Hawaii contain high amounts of iron- and aluminum oxides or amorphous alumino silicate clays, which react strongly with P making it virtually unavailable for plant uptake. Acceptable crop production is not possible unless adequate P fertilizers are applied. Growers need to know if a soil needs P and if so how much. The Farmer's Bookshelf hypermedia information system, which runs under the software HyperCard, can quickly provide these answers. A screen is displayed in which the soil series and the crop to be grown are specified through pull-down menus. The user then enters the Truogextractable P value of the soil and clicks on a “Calculate” button. The soil solution P value is calculated and compared to the minimum soil solution P needed to adequately grow the crop (80% to 95% of maximum yield). If the value is greater than the minimum value, then P fertilizer is not recommended. Otherwise, the program recommends the amount of fertilizer to add as P, P2O5, and treble superphosphate in pound per 1000 square feet and pound per acre. The recommendations, presented in a table, can then be printed for clientele use.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nico Ueberschaar ◽  
Katharina Lehmann ◽  
Stefanie Meyer ◽  
Christian Zerfass ◽  
Beate Michalzik ◽  
...  

Surface-sourced organic compounds in infiltrating waters and percolates are transformed during their belowground passage. Biotic and abiotic processes thereby lead to continuously changing chemical environments in subsurface compartments. The investigation of such transformations of organic compounds aims for tracing subsurface fluxes as well as biotic and abiotic activity. To collect samples of soil solution, different kinds of lysimeters are available, spanning simple free-draining devices that sample water based on gravimetric flow and tension lysimeters allowing for approximating natural hydraulic conditions. Protocols for untargeted analytical profiling of organic soil solution constituents are scarce. We report here a solid phase extraction followed by GC–MS analysis, utilizing two long-term sampling devices in the Hainich Critical Zone Exploratory in Thuringia, Germany. In addition, we introduce a new lysimeter constructed exclusively from inert materials that allows for obtaining samples with little background signals in GC–MS. Polyvinylchloride (PVC)-based lysimeters introduce substantial background signals from plasticizers. We show how signals from these contaminants can be lowered during data analysis using chemometric background removal. Applying multivariate statistics for data analysis, we demonstrate the ability for monitoring of several sugars, fatty acids and phenolic acids at the topsoil-subsoil boundary and even beyond, via an untargeted analytical approach. Statistical tools facilitated the detection of differences in chemical signatures at three different land use sites. Data mining methods for metabolomics led to the identification of 3-carboxyphenylalanin as marker for a pasture site. The combined approach is suitable for the collection and extraction of topsoil and subsoil solution for untargeted metabolomics under near-natural flow conditions.


2016 ◽  
pp. 59-70
Author(s):  
Ninh Le Khuong ◽  
Nghiem Le Tan ◽  
Tho Huynh Huu

This paper aims to detect the impact of firm managers’ risk attitude on the relationship between the degree of output market uncertainty and firm investment. The findings show that there is a negative relationship between these two aspects for risk-averse managers while there is a positive relationship for risk-loving ones, since they have different utility functions. Based on the findings, this paper proposes recommendations for firm managers to take into account when making investment decisions and long-term business strategies as well.


Sign in / Sign up

Export Citation Format

Share Document