scholarly journals Evaluation of the seasonal formation of subsurface negative preformed nitrate anomalies in the subtropical North Pacific and North Atlantic

2018 ◽  
Vol 15 (21) ◽  
pp. 6461-6480 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime mixed-layer drawdown of dissolved inorganic carbon in the absence of measurable nutrients in the ocean's subtropical gyres and non-Redfieldian oxygen : nitrate relationships in the underlying subsurface waters are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute to one or both, including lateral nutrient transport, carbon overconsumption or non-Redfield C:N:P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. To obtain insight into the likely magnitude of potential contributing mechanisms that can remove nitrate from the nutricline while supporting dissolved inorganic carbon (DIC) drawdown tens of meters higher in the water column, we investigated the seasonal formation rates for negative preformed nitrate (preNO3) anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the North Pacific and BATS (Bermuda Atlantic Time-series Study) in the North Atlantic. Non-Redfield -O2:N stoichiometry for dissolved organic matter (DOM) remineralization accounts for up to ∼15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. We present a new formulation for calculating preNO3 (residual preNO3) that includes components resulting from non-Redfield DOM cycling. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ∼32–46 mmol N m−2 yr−1 at Station ALOHA and ∼46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with residual positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. We evaluate three mechanisms to explain these anomalies, calculating that transparent exopolymer particle (TEP) cycling and heterotrophic nitrate uptake can contribute to the formation of both residual preNO3 anomalies. However, a significant fraction, estimated at ∼50 %–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary distribution, nutrient acquisition strategy, and biogeochemical signature to simultaneously remove nitrate at depth and transport it above the nutricline. Reported transport rates by known migrators equal or exceed the residual preNO3 anomaly formation rates and potentially explain both the negative and positive residual preNO3 anomalies as well as the mixed-layer DIC drawdown at the stations ALOHA and BATS within the limits of scarce detailed abundance profiles. However, the three processes examined are not independent and mutually exclusive. The model Rhizosolenia mat system (and perhaps other migrators) produces TEPs, suggesting that migration could provide accelerated vertical transport of TEPs and provide labile carbon for heterotrophic nitrate uptake. These results based on geochemical distributions suggest that, in the absence of additional mechanisms and rates, phytoplankton vertical migrators, although rare and easily overlooked, play a larger role in subtropical ocean nutrient cycling and the biological pump than generally recognized.

2018 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.


2016 ◽  
Vol 13 (4) ◽  
pp. 1163-1177 ◽  
Author(s):  
Kristen M. Krumhardt ◽  
Nicole S. Lovenduski ◽  
Natalie M. Freeman ◽  
Nicholas R. Bates

Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore (haptophyte) pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) as a proxy for coccolithophore abundance to show that coccolithophore populations in the North Atlantic subtropical gyre have been increasing significantly over the past 2 decades. Over 1990–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore pigment abundance at BATS, though we note that this is sensitive to the period being analyzed. We further demonstrate that variability in coccolithophore chlorophyll a here is positively correlated with variability in nitrate and DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by  ∼ 1.4 µmol kg−1 yr−1 over the period of 1991–2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.


2015 ◽  
Vol 12 (12) ◽  
pp. 9275-9305
Author(s):  
A. Singh ◽  
S. E. Baer ◽  
U. Riebesell ◽  
A. C. Martiny ◽  
M. W. Lomas

Abstract. Nitrogen (N) and phosphorus (P) availability determine the strength of the ocean's carbon (C) uptake, and variation in the N : P ratio in inorganic nutrients is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested that biological processes in the surface ocean controlled deep ocean chemistry. Recent studies have emphasized the role of inorganic N : P ratios in governing biogeochemical processes, particularly the C : N : P ratio in suspended particulate organic matter (POM), with somewhat less attention given to exported POM and dissolved organic matter (DOM). Herein, we extend the discussion on ecosystem C : N : P stoichiometry but also examine temporal variation of stoichiometric relationships. We have analysed elemental stoichiometry in the suspended POM and total (POM + DOM) organic matter (TOM) pools in the upper 100 m, and in the exported POM and sub-euphotic zone (100–500 m) inorganic nutrient pools from the monthly data collected at the Bermuda Atlantic Time-series Study (BATS) site located in the western part of the North Atlantic Ocean. C : N : P ratios in the TOM pool were more than twice that in the POM pool. Observed C : N ratios in suspended POM were approximately equal to the canonical Redfield Ratio (C : N : P = 106 : 16 : 1), while N : P and C : P ratios in the same pool were more than twice the Redfield Ratio. Average N : P ratios in the subsurface inorganic nutrient pool were ~ 26 : 1, squarely between the suspended POM ratio and the Redfield ratio. We have further linked variation in elemental stoichiometry with that of phytoplankton cell abundance observed at the BATS site. Findings from this study suggest that the variation elemental ratios with depth in the euphotic zone was mainly due to different growth rates of cyanobacterial cells. These time-series data have also allowed us to examine the potential role of climate variability on C : N : P stoichiometry. This study strengthens our understanding of elemental stoichiometry in different organic matter pools and should improve biogeochemical models by constraining the range of non-Redfield stoichiometry.


2015 ◽  
Vol 12 (22) ◽  
pp. 18625-18660
Author(s):  
K. M. Krumhardt ◽  
N. S. Lovenduski ◽  
N. M. Freeman ◽  
N. R. Bates

Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) to show that coccolithophore populations in the North Atlantic Subtropical Gyre have been increasing significantly over the past two decades. Over 1991–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore abundance at BATS. We further demonstrate that variability in coccolithophore abundance here is positively correlated with variability in DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ∼ 1.4 μmol kg−1 yr−1 over 1991 to 2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.


2012 ◽  
Vol 9 (8) ◽  
pp. 2831-2846 ◽  
Author(s):  
B. Fernández-Castro ◽  
L. Anderson ◽  
E. Marañón ◽  
S. Neuer ◽  
B. Ausín ◽  
...  

Abstract. We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 mol O2 m−2, −1.73±0.52 mol C m−2 and −125±36 mmol N m−2) were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 mol O2 m−2, −1.42±0.30 mol C m−2 and −213±56 mmol N m−2), although the differences were not statistically significant. Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9±1.0 mol O2 m−2, 1.53±0.43 mol C m−2 and 38±155 mmol N m−2) were statistically higher for oxygen compared to BATS (−1.81±0.37 mol O2 m−2, 1.52±0.30 mol C m−2 and 147±43 mmol N m−2). The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of non-sinking organic matter at ESTOC.


2011 ◽  
Vol 8 (6) ◽  
pp. 12477-12519 ◽  
Author(s):  
B. Fernández-Castro ◽  
L. Anderson ◽  
E. Marañón ◽  
S. Neuer ◽  
B. Ausín ◽  
...  

Abstract. We used 5-year concomitant data of tracers distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection and compute net production and shallow remineralization rates at both sites. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34 ± 0.79 mol O2 m−2, −1.73 ± 0.52 mol C m−2 and −125 ± 36 mmol N m−2) showed no statistically significant differences compared to ESTOC (1.03 ± 0.62 mol O2 m−2, −1.42 ± 0.30 mol C m−2 and −213 ± 56 mmol N m−2). Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9 ± 1.0 mol O2 m−2, 1.53 ± 0.43 mol C m−2 and 38 ± 155 mmol N m−2) were statistically higher for oxygen compared to BATS (−1.81 ± 0.37 mol O2 m−2, 1.52 ± 0.30 mol C m−2 and 147 ± 43 mmol N m−2). Lateral advection, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. Due to the relevance of the horizontal transport at ESTOC, we cannot assert that the differences in shallow remineralization rates computed for both stations can explain the observed descrepancies in the flux of sinking organic matter.


2020 ◽  
Author(s):  
Markus Kienast ◽  
Sam Davin ◽  
Kristin Doering ◽  
Dierk Hebbeln ◽  
Stephanie Kienast ◽  
...  

&lt;p&gt;Subsurface nitrate in the Labrador Sea (NW Atlantic) and Baffin Bay is provided by North Pacific water flowing through Bering Strait and the Canadian Arctic as well as by advection from the North Atlantic. Both these nitrate sources are distinct in their isotopic signature (&amp;#948;&lt;sup&gt;15&lt;/sup&gt;N), owing to benthic denitrification on the Bering, Chukchi and east Siberian shelves and nitrogen fixation in the North Atlantic, respectively. Accordingly, water column profiles of &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;(nitrate)&lt;/sub&gt; collected off Greenland in the eastern Labrador Sea show low &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;(nitrate)&lt;/sub&gt;, which mixes with more &lt;sup&gt;15&lt;/sup&gt;N-enriched nitrate flowing through Baffin Bay into the northern Labrador Sea. The Labrador Current carries this mixture southward along the western Labrador Sea, toward Newfoundland. The &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N of surface sediments in the Labrador Sea closely mirrors these water column signals, suggesting that sediments can be used to trace changes in both the source signature of Atlantic versus Pacific-derived nitrate as well as in the admixture of the two source waters.&lt;/p&gt;&lt;p&gt;Two downcore sedimentary &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N records from the NE and NW Labrador Sea coast both show high &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N values of ca. 7&amp;#8240; during the early Holocene (9-7 kyrs BP). In the NE Labrador Sea, this is followed by a long-term decrease toward &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N of ca. 4.5&amp;#8240; at the core top, in contrast to a much more subtle decrease in the NW Labrador Sea (surface sediment &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N of ca. 6.5&amp;#8240;). The decreasing &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N values along the eastern Labrador Sea are consistent with a Holocene increase in nitrogen fixation in the North Atlantic or an increasing advection of isotopically light nitrate. In turn, an increasing admixture of North-Pacific-derived nitrate, or intensified denitrification on the Bering Shelf would be required to explain the much subdued Holocene &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N decrease in the NW Labrador Sea.&lt;/p&gt;


2013 ◽  
Vol 10 (8) ◽  
pp. 14515-14537
Author(s):  
V. Racapé ◽  
N. Metzl ◽  
C. Pierre ◽  
G. Reverdin ◽  
P. D. Quay ◽  
...  

Abstract. This study introduces for the first time the δ13CDIC seasonality in the North Atlantic Subpolar Gyre (NASPG) using δ13CDIC data obtained between 2005 and 2012 with Dissolved Inorganic Carbon (DIC) and nutrient observations. On the seasonal scale, the NASPG is characterized by higher δ13CDIC values during summer than during winter with seasonal amplitude of 0.77‰. This is attributed to biological activity in summer and to deep remineralization process during winter convection. During all seasons, we observed a strong linear relationship between δ13CDIC and DIC. Results also revealed a negative anomaly for DIC and nutrients in August 2010 that could be explained by a coccolithophore bloom associated to a warming up to +2 °C. Winter data also showed a large decrease in δ13CDIC associated with an increase in DIC between 2006 and 2011–2012 but with observed time rates (−0.04‰ yr−1and +1.7 μmol kg−1 yr−1) much larger than the expected anthropogenic signal.


Sign in / Sign up

Export Citation Format

Share Document