scholarly journals Disturbance legacies have a stronger effect on future carbon exchange than climate in a temperate forest landscape

2018 ◽  
Author(s):  
Dominik Thom ◽  
Werner Rammer ◽  
Rita Garstenauer ◽  
Rupert Seidl

Abstract. Forest ecosystems play an important role in the global climate system, and are thus intensively discussed in the context of climate change mitigation. Over the past decades temperate forests were a carbon (C) sink to the atmosphere. However, it remains unclear to which degree this C uptake is driven by a recovery from past disturbances vs. ongoing climate warming, inducing high uncertainty regarding the future temperate forest C sink. Here our objectives were (i) to investigate legacies within the natural disturbance regime by empirically analyzing two disturbance episodes affecting the same landscape 90 years apart, and (ii) to unravel the effects of past disturbances and future climate on 21st century forest C uptake by means of simulation modelling. We collected historical data from archives to reconstruct vegetation and disturbance history of a forest landscape in the Austrian Alps from 1905 to 2013. The effect of past legacies and future climate was determined by simulating 32 different combinations of past disturbances (including natural disturbances and management) and future climate scenarios. We found only moderate spatial overlap between two episodes of wind and bark beetle disturbance affecting the landscape in the early 20th and 21st century, respectively. The future forest C sink was driven by past disturbances, while climate change reduced forest C uptake. Historic management (and its cessation) had a considerably stronger influence on the future C balance than the natural disturbance episodes of the past. We conclude that neglecting disturbance legacies can substantially bias assessments of future forest dynamics.

2018 ◽  
Vol 15 (18) ◽  
pp. 5699-5713 ◽  
Author(s):  
Dominik Thom ◽  
Werner Rammer ◽  
Rita Garstenauer ◽  
Rupert Seidl

Abstract. Forest ecosystems play an important role in the global climate system and are thus intensively discussed in the context of climate change mitigation. Over the past decades temperate forests were a carbon (C) sink to the atmosphere. However, it remains unclear to which degree this C uptake is driven by a recovery from past land use and natural disturbances or ongoing climate change, inducing high uncertainty regarding the future temperate forest C sink. Here our objectives were (i) to investigate legacies within the natural disturbance regime by empirically analyzing two disturbance episodes affecting the same landscape 90 years apart, and (ii) to unravel the effects of past land use and natural disturbances as well as the future climate on 21st century forest C uptake by means of simulation modeling. We collected historical data from archives to reconstruct the vegetation and disturbance history of a forest landscape in the Austrian Alps from 1905 to 2013. The effects of legacies and climate were disentangled by individually controlling for past land use, natural disturbances, and future scenarios of climate change in a factorial simulation study. We found only moderate spatial overlap between two episodes of wind and bark beetle disturbance affecting the landscape in the early 20th and 21st century, respectively. Our simulations revealed a high uncertainty about the relationship between the two disturbance episodes, whereas past land use clearly increased the impact of the second disturbance episode on the landscape. The future forest C sink was strongly driven by the cessation of historic land use, while climate change reduced forest C uptake. Compared to land-use change the two past episodes of natural disturbance had only marginal effects on the future carbon cycle. We conclude that neglecting legacies can substantially bias assessments of future forest dynamics.


2019 ◽  
Vol 11 (2) ◽  
pp. 341-366 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
Hamideh Kazemi ◽  
P. Ranjan Sarukkalige

Abstract The application of two distinctively different hydrologic models, (conceptual-HBV) and (distributed-BTOPMC), was compared to simulate the future runoff across three unregulated catchments of the Australian Hydrologic Reference Stations (HRSs), namely Harvey catchment in WA, and Beardy and Goulburn catchments in NSW. These catchments have experienced significant runoff reduction during the last decades due to climate change and human activities. The Budyko-elasticity method was employed to assign the influences of human activities and climate change on runoff variations. After estimating the contribution of climate change in runoff reduction from the past runoff regime, the downscaled future climate signals from a multi-model ensemble of eight global climate models (GCMs) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the mid-(2046–2065) and late-(2080–2099) 21st-century. Results show that the conceptual model performs better than the distributed model in capturing the observed streamflow across the three contributing catchments. The performance of the models was relatively compatible in the overall direction of future streamflow change, regardless of the magnitude, and incompatible regarding the change in the direction of high and low flows for both future climate scenarios. Both models predicted a decline in wet and dry season's streamflow across the three catchments.


2021 ◽  
Author(s):  
Joel Guiot ◽  
Nicolas Bernigaud ◽  
Alberte Bondeau ◽  
Laurent Bouby

<p>Using a statistical emulator of a coupled climate-ecosystem model, this paper proposes a method to link the vine potential productivity and the viticulture extension in the Mediterranean area to global climate drivers, such as orbital parameters, solar and volcan activities and greenhouse gas concentrations. The emulator was calibrated on several tens of simulations of earth system models in various situations from the PMIP3 past (Last Glacial Maximum, Mid-Holocene, last millennium) and the CMIP5 future simulation up to 2100 under several RCP scenarios. The key climate variables produced by these simulations were introduced in an ecosystem model (BIOME4), so the ecosystem variables can be directly estimated from the global drivers. The large variation of situations used for calibration produces a robust emulator able to extrapolate to a large range of past and future climate states. Applied to the Mediterranean and European area, the emulator has been validated on several key periods of the past where the climate is known to have much changed. Finally, it was used to simulate the viticulture extension not only for these key past periods but also for different scenarios of the future, related to a global warming of 1.5°C, 2°C, 3°C and 5°C. Even if human groups are mainly responsible of viticulture extension, climate is a driver in the way that bad climate conditions may be a limit to extension or even a driver of regression.</p><p>The main findings are: (i) If the climate change projected for the future can be attributed to greenhouse gases increase as expected, the variations of the last millennia in the Mediterranean Basin can be attributed to the volcanic activity, the solar activity effect being negligeable; (ii) the effects of these volcanic forcing on the climate are not necessarily uniform across the basin and had a large impact on the viticulture as they were sufficiently important to be responsible of extension of viticulture on the whole Gaul during the Roman Climate Optimum; (iii) for the future, it is projected large difficulties for viticulture in Spain and North Africa. They will be particular important for a global warming of +3°C and more; (iv) there is little hope that an intense volcanic activity could slow down<strong> </strong>this regression.</p>


2019 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Yi Yao ◽  
Xianhong Xie ◽  
Shanshan Meng ◽  
Bowen Zhu ◽  
Kang Zhang ◽  
...  

The hydrological regime in arid and semi-arid regions is quite sensitive to climate and land cover changes (LCC). The Three-North region (TNR) in China experiences diverse climate conditions, from arid to humid zones. In this region, substantial LCC has occurred over the past decades due to ecological restoration programs and urban expansion. At a regional scale, the hydrological effects of LCC have been demonstrated to be less observable than the effects of climate change, but it is unclear whether or not the effects of LCC may be intensified by future climate conditions. In this study, we employed remote sensing datasets and a macro-scale hydrological modeling to identify the dependence of the future hydrological regime of the TNR on past LCC. The hydrological effects over the period from 2020–2099 were evaluated based on a Representative Concentration Pathway climate scenario. The results indicated that the forest area increased in the northwest (11,691 km2) and the north (69 km2) of China but declined in the northeast (30,042 km2) over the past three decades. Moreover, the urban area has expanded by 1.3% in the TNR. Under the future climate condition, the hydrological regime will be influenced significantly by LCC. Those changes from 1986 to 2015 may alter the future hydrological cycle mainly by promoting runoff (3.24 mm/year) and decreasing evapotranspiration (3.23 mm/year) over the whole region. The spatial distribution of the effects may be extremely uneven: the effects in humid areas would be stronger than those in other areas. Besides, with rising temperatures and precipitation from 2020 to 2099, the LCC may heighten the risk of dryland expansion and flooding more than climate change alone. Despite uncertainties in the datasets and methods, the regional-scale hydrological model provides new insights into the extended impacts of ecological restoration and urbanization on the hydrological regime of the TNR.


Author(s):  
D. J. Lunt ◽  
H. Elderfield ◽  
R. Pancost ◽  
A. Ridgwell ◽  
G. L. Foster ◽  
...  

This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.


2008 ◽  
Vol 5 (6) ◽  
pp. 4847-4866 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cadule ◽  
S. L. Piao ◽  
P. Ciais ◽  
S. Sitch

Abstract. Future climate change will have impact on global and regional terrestrial carbon balances. The fate of African tropical forests over the 21st century has been investigated through global coupled climate carbon cycle model simulations. Under the SRES-A2 socio-economic CO2 emission scenario of the IPCC, and using the Institut Pierre Simon Laplace coupled ocean-terrestrial carbon cycle and climate model, IPSL-CM4-LOOP, we found that the warming over African ecosystems induces a reduction of net ecosystem productivity, making a 20% contribution to the global climate-carbon cycle positive feedback. However, the African rainforest ecosystem alone makes only a negligible contribution to the overall feedback, much smaller than the one arising from the Amazon forest. This is first because of the two times smaller area of forest in Africa, but also because of the relatively lower local land carbon cycle sensitivity to climate change. This beneficial role of African forests in mitigating future climate change should be taken into account when designing forest conservation policy.


Author(s):  
Olufemi Samson Adesina ◽  
Brian Thomas

This study assessed the potential impacts of climate change on potato production in the United Kingdom. Climate change actions are becoming a nightmare for growers worldwide, and the British potato industry is not an exception. Extreme weather conditions were experienced in 2006, 2012, and 2018, respectively. Thus, this study identified the future climate risk associated with major potato producing regions in the UK using the recent climate projection weather data (UKCP18) based on RCP 8.5. In total, the study considered seven (7) regions with a minimum average of 3000 hectares of potato planted area in the past five years. Findings showed that drought, high temperatures, and prolonged precipitation caused significant yield and quality loss in the past, with a likelihood of causing a more harmful impact in the future. The analysis revealed a hotter (Tmax ≥ 25°C, Tmin ≥ 15°C) and drier (1-1.5 mm day-1) summer most especially in the EE, EM, SW, WM, and YH as well as a warmer (Tmax& Tmin 6-10°C) and wetter winter (5 mm day-1 on average) in Scotland and North West England respectively. Future climate is predicted to hinder land preparation and harvesting operation in the Northern regions while the EE, EM, SW, WM, and YH would be faced with drought, with irrigation and water demand increasing by 20-30% as evapotranspiration also increases by 20-30% in 2050-2080. Irrigated potatoes are predicted to double its current spatial coverage in the future. The study identified suitable adaptation measures and strategies required to reduce the impacts of climate change on the British potato industry.


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Sign in / Sign up

Export Citation Format

Share Document