scholarly journals Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta

2021 ◽  
Author(s):  
Joko Sampurno ◽  
Valentin Vallaeys ◽  
Randy Ardianto ◽  
Emmanuel Hanert

Abstract. The Kapuas River delta is a unique estuary system on the west coast of Borneo Island, Indonesia. Its hydrodynamics is driven by an interplay between storm surges, tides, and rivers discharge. These interactions are likely to be exacerbated by global warming, leading to more frequent compound flooding in the area. The mechanisms driving compound flooding events in the Kapuas River Delta remain, however, poorly known. Here we attempt to fill this gap by assessing the interactions between river discharges, tides, and storm surges and how they can drive a compound inundation over the riverbanks, particularly within Pontianak, the main city along the Kapuas River. We simulated these interactions using the multi-scale hydrodynamic model SLIM. Our model correctly reproduces the Kapuas River’s hydrodynamics and its interactions with tides and storm surge from the Karimata Strait. We considered several extreme scenario test cases to evaluate the impact of tide-storm-discharge interactions on the maximum water level profile from the river mouth to the upstream part of the river. Based on the maximum water level profiles, we could divide the main branch of the Kapuas River’s stream into three zones, i.e., the tidally-dominated region (from the river mouth to about 4 km upstream), the mixed-energy region (from about 4 km to about 30 km upstream) and the river-dominated region (beyond 30 km upstream). Thus, the local water management can define proper mitigation for handling compound flooding hazards along the riverbanks by using this zoning category. The model also successfully reproduced a compound inundation event in Pontianak, which occurred on 29 December 2018. For this event, the wind-generated surge appeared to be the dominant trigger.

2018 ◽  
Vol 18 (5) ◽  
pp. 1852-1860 ◽  
Author(s):  
Yuqin Gao ◽  
Yu Yuan ◽  
Huaizhi Wang ◽  
Zhenxing Zhang ◽  
Liu Ye

Abstract Flood control with polders is prevalent in East China. Their impact on flood processes is critically important for flood control, but has not been well documented. The Qinhuai River Basin was selected as the study area. A Hydrologic Engineering Center – River Analysis System (HEC-RAS) hydraulic model was developed to simulate and predict storm flood processes and the associated impact of polders. The study shows that the HEC-RAS model is capable of simulating the impact of polders on flood processes in the Qinhuai River Basin. The polders increased the water level outside of the polders. The polders in upstream watersheds have a greater impact on the water level than polders close to basin outlets when individually distributed. The maximum water level at Dongshan section shows an increasing trend for different sized flood with the increasing number of polders in the basin, and a linear increasing trend associated with urbanization. The smaller the flood scale is, the greater the maximum water level changes.


Author(s):  
Björn R. Röbke ◽  
Albert Oost ◽  
Friederike Bungenstock ◽  
Peter Fischer ◽  
Bart Grasmeijer ◽  
...  

Abstract The 1717 Christmas flood is one of the most catastrophic storm surges the Frisian coast (Netherlands and Germany) has ever experienced. With more than 13,700 casualties it is the last severe storm surge with a death toll of this order. At the same time, little is known about the hydrodynamic conditions and the morphological effects associated with this storm surge. In this study, 41 potential dyke failures in the Province of Groningen (Netherlands) associated with the 1717 Christmas flood were systematically reconstructed and mapped by using historical maps and literature and by analysing the recent topography in search of typical pothole structures and sediment fans. The dimensions of the sediment fans as derived from the topography show a good accordance with the dimensions documented by vibracore profiles, direct push tests and electrical resistivity tomography data taken at three fieldwork sites. Moreover, the fan dimensions closely agree with the dimensions as simulated using a process-based morphodynamic numerical model for one of the three sites, the village of Wierhuizen. Consequently, the recent topography is still indicative for the locations and dimensions of dyke failures and sediment fans associated with the 1717 Christmas flood. Considering the large number of detected dyke failures (41) and the large dimensions of the potholes and particularly of the sediment fans up to a few hundred metres wide and up to 0.7 m thick, this study proves significant morphological effects of the 1717 Christmas flood on the mainland of the Province of Groningen. Based on the numerical simulation approach and the comparison with field data and field observations, a maximum seaward water level of 5 m NAP for the dyke failure at Wierhuizen during the Christmas flood can be derived. A similar maximum water level is indicated for the two other fieldwork sites Vierhuizen and Kohol, which is in good agreement with the maximum storm surge level of 4.62 m NAP historically documented for the city of Emden located almost 50 km to the east of Wierhuizen. The results of the current study demonstrate that the reconstruction of historical dyke failures based on (i) historical sources, (ii) recent lidar/high-resolution topographical data, (iii) multi-proxy sedimentary field data and (iv) hydro- and morphodynamic numerical simulations is a highly promising approach to derive hydrodynamic conditions and the morphological onshore response of the 1717 Christmas flood in the Province of Groningen. This knowledge is essential to improve our understanding of extreme storm surge dynamics, their influence on the coastal landscape and the associated hazards for the coastal population.


Author(s):  
Yasser Hamdi ◽  
Emmanuel Garnier ◽  
Nathalie Giloy ◽  
Claire-Marie Duluc ◽  
Vincent Rebour

Abstract. This paper aims to demonstrate the technical feasibility of a historical study devoted to French Nuclear Power Plants (NPPs) which can be prone to the extreme marine flooding events. It has been shown in the literature that the use of HI can significantly improve the probabilistic and statistical modeling of extreme events. There is a significant lack of historical data about marine flooding (storms and storm surges) compared to river flooding events. To address this data scarcity and to improve the estimation of the risk associated to the marine flooding hazards, a dataset of historical storms and storm surges that hit the Nord-Pas-de-Calais region during the five past centuries were recovered from archival sources, examined and used in a frequency analysis (FA) in order to assess its impact on the frequency estimations. This work on the Dunkirk site (representative of the Gravelines NPP) is a continuation of previous work performed on the La Rochelle site in France. Indeed, the frequency model (FM) used in the present paper had some success in the field of coastal hazards and it has been applied in previous studies to surge datasets to prevent marine flooding in the La Rochelle region in France. In a first step, only information collected from the literature (published reports, journal papers and PhD theses) is considered. A 1954 Coastal Engineering journal issue (Le Gorgeu and Guitonneau, 1954) on the reconstruction of the eastern dyke in Dunkirk has been more than a reference for this paper. It has indeed served as a main source of historical information (HI) in this study. Although this first historical dataset has extended the gauged record back in time to 1897, serious questions related to the exhaustiveness of the information and about the validity of the developed FM have remained unanswered. Additional qualitative and quantitative HI were extracted in a second step from many older archival sources. This work has led to the construction of storms and marine flooding sheets summarizing key data on each identified event. The quality control and the cross-validation of the collected information, which have been carried out systematically, indicate that it is valid and complete as regards extreme storms and storm surges. Most of the HI gathered displays a good agreement with other archival sources and documentary climate reconstructions. The probabilistic and statistical analysis of a dataset containing an exceptional observation considered as an outlier (i.e. the 1953 storm surge) has been significantly improved when the additional HI gathered in both literature and archives are used. As the historical data tend to be extreme, the right tail of the distribution has been reinforced and the 1953 exceptional event don't appear as an outlier any more. This new dataset provides a valuable source of information on storm surges for future characterization of coastal hazards.


2019 ◽  
Vol 27 (1) ◽  
pp. 344-353
Author(s):  
Abdul-Hassan K. Al-Shukur ◽  
Ranya Badea’ Mahmoud

One of the most common type of embankment dam failure is the dam-break due to overtopping. In this study, the finite elements method has been used to analyze seepage and limit equilibrium method to study stability of the body of an earthfill dam during the flood condition. For this purpose, the software Geostudio 2012 is used through its subprograms SEEP/W and SLOPE/W. Al-Adhaim dam in Iraq has been chosen to analysis the 5 days of flood. It was found that the water flux of seepage during the flood reaches about 8.772*10-5. m3/sec when the water level 146.5 m at 2nd day. Seepage through the embankment at maximum water level increased by 55.1 % from maximum water level. It was concluded that the factor of safety against sliding in downstream side decrease with increasing water level and vice versa. It was also concluded that the deposits are getting more critical stability during the conditions of flood when the factor of safety value reaches 1.219 at 2nd day.


2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Dyah Pratiwi Kusumastuti ◽  
Husna Alghoida

Abstract Dams have many benefits such as irrigation, flood prevention, power generation and even tourism, especially in areas where the dam is located. So that the benefits received can last a long time, in the planning, it must be analyzed for stability, seepage discharge that occurs and the safety of the piping. The piping hazard safety figures in this study were calculated using the Harza method for maximum water level conditions, normal water levels, fast receding and empty dams at sta 0 + 150, sta 0 + 200, sta 0 + 250 and sta 0 + 300. Based on the calculation results, it is found that the safety of piping hazards without filters with the grouting method do not meet the requirements safety factor, especially in conditions of maximum water level, normal water level and fast receding. In order for the safety of piping hazard in order to meet the requirements, a filter is applied under the dams. The filter is applied so that the piping hazard safety figure meets the requirements of all water level conditions and all station is 80 cm deep.   Keywords: safety factor, piping, Harza method, filter   ABSTRAK Bendungan memiliki banyak manfaat seperti irigasi, pencegah banjir, pembangkit listrik bahkan pariwisata khususnya pada wilayah dimana bendungan tersebut berada. Agar manfaat yang diterima dapat berlangsung lama maka dalam perencanaannya wajib dianalisis terhadap stabilitas, debit rembesan yang terjadi maupun keamanan dari piping. Angka keamanan bahaya piping pada penelitian ini dihitung dengan menggunakan metode Harza untuk kondisi muka air maksimum, muka air normal, surut cepat dan bendungan kosong di sta 0+150, sta 0+200, sta 0+250 serta sta 0+300. Berdasarkan hasil perhitungan didapatkan bahwa angka keamanan bahaya piping tanpa penggunaan filter dengan metode grouting tidak memenuhi persyaratan angka keamanan khususnya pada kondisi muka air maksimum, muka air normal dan surut cepat. Agar angka keamanan bahaya piping memenuhi persyaratan maka diaplikasikan filter dibawah tubuh bendungan. Filter yang diaplikasikan agar angka keamanan bahaya piping memenuhi persyaratan diseluruh kondisi muka air dan seluruh sta adalah dengan kedalaman 80 cm.   Kata kunci: angka keamanan, piping, metode Harza, filter Abstract Dams have many benefits such as irrigation, flood prevention, power generation and even tourism, especially in areas where the dam is located. So that the benefits received can last a long time, in the planning, it must be analyzed for stability, seepage discharge that occurs and the safety of the piping. The piping hazard safety figures in this study were calculated using the Harza method for maximum water level conditions, normal water levels, fast receding and empty dams at sta 0 + 150, sta 0 + 200, sta 0 + 250 and sta 0 + 300. Based on the calculation results, it is found that the safety of piping hazards without filters with the grouting method do not meet the requirements safety factor, especially in conditions of maximum water level, normal water level and fast receding. In order for the safety of piping hazard in order to meet the requirements, a filter is applied under the dams. The filter is applied so that the piping hazard safety figure meets the requirements of all water level conditions and all station is 80 cm deep.   Keywords: safety factor, piping, Harza method, filter   ABSTRAK Bendungan memiliki banyak manfaat seperti irigasi, pencegah banjir, pembangkit listrik bahkan pariwisata khususnya pada wilayah dimana bendungan tersebut berada. Agar manfaat yang diterima dapat berlangsung lama maka dalam perencanaannya wajib dianalisis terhadap stabilitas, debit rembesan yang terjadi maupun keamanan dari piping. Angka keamanan bahaya piping pada penelitian ini dihitung dengan menggunakan metode Harza untuk kondisi muka air maksimum, muka air normal, surut cepat dan bendungan kosong di sta 0+150, sta 0+200, sta 0+250 serta sta 0+300. Berdasarkan hasil perhitungan didapatkan bahwa angka keamanan bahaya piping tanpa penggunaan filter dengan metode grouting tidak memenuhi persyaratan angka keamanan khususnya pada kondisi muka air maksimum, muka air normal dan surut cepat. Agar angka keamanan bahaya piping memenuhi persyaratan maka diaplikasikan filter dibawah tubuh bendungan. Filter yang diaplikasikan agar angka keamanan bahaya piping memenuhi persyaratan diseluruh kondisi muka air dan seluruh sta adalah dengan kedalaman 80 cm.   Kata kunci: angka keamanan, piping, metode Harza, filter


2019 ◽  
Vol 7 (8) ◽  
pp. 242 ◽  
Author(s):  
Jon Derek Loftis ◽  
Molly Mitchell ◽  
Daniel Schatt ◽  
David R. Forrest ◽  
Harry V. Wang ◽  
...  

Changes in the eustatic sea level have enhanced the impact of inundation events in the coastal zone, ranging in significance from tropical storm surges to pervasive nuisance flooding events. The increased frequency of these inundation events has stimulated the production of interactive web-map tracking tools to cope with changes in our changing coastal environment. Tidewatch Maps, developed by the Virginia Institute of Marine Science (VIMS), is an effective example of an emerging street-level inundation mapping tool. Leveraging the Semi-implicit Cross-scale Hydro-science Integrated System Model (SCHISM) as the engine, Tidewatch operationally disseminates 36-h inundation forecast maps with a 12-h update frequency. SCHISM’s storm tide forecasts provide surge guidance for the legacy VIMS Tidewatch Charts sensor-based tidal prediction platform, while simultaneously providing an interactive and operationally functional forecast mapping tool with hourly temporal resolution and a 5 m spatial resolution throughout the coastal plain of Virginia, USA. This manuscript delves into the hydrodynamic modeling and geospatial methods used at VIMS to automate the 36-h street-level flood forecasts currently available via Tidewatch Maps, and the paradigm-altering efforts involved in validating the spatial, vertical, and temporal accuracy of the model.


2021 ◽  
Author(s):  
Eleanor D'Arcy

<p>Storm surges pose an increasing risk to coastline communities. These events, combined with high tide, can result in coastal flooding. To reduce the impact of storm surges, an accurate estimate of coastal flood risk is necessary. Specifically, estimates are required for the return level of sea levels (still water), which is the level with annual exceedance probability <em>p</em>. This estimate is used as an input to determine the height for a coastal defence, such as a sea wall. The return level estimation requires statistical analysis based on extreme value theory, as we need to know about the frequency of events that are more extreme than those previously observed.</p><p>Large storm surges exhibit seasonality, they are typically at their worst in the winter and least extreme in the summer. This seasonal pattern differs from that of the tide, whose seasonality is driven astronomically, resulting in tidal peaks at the spring and autumn equinoxes. Hence, the worst levels of these two components of still water level are likely to peak at different times in the year, and so statistical methods that treat them as independent variables are likely to over-estimate return levels.</p><p>We focus on the skew surge: the difference between the observed and predicted high water within a tidal cycle. Williams et al. (2016) show that tide and skew surge are independent conditional on the time of year. Batstone et al. (2013) used this property to derive estimates used for UK coastal flood defences. They used generalised Pareto distributions for the skew surge tail but did not account for the separate seasonality of tide and skew surge.</p><p>This work aims to model how the distribution of skew surges changes over a year and we combine our results with the known seasonality of tides to derive estimates of still water level return levels. We compare our results with the Batstone et al. (2013) approach at a few locations on the UK coastline.</p><p>References:</p><p>Batstone, C., Lawless, M., Tawn, J., Horsburgh, K., Blackman, D., McMillan, A., Worth, D., Laeger, S. and Hunt, T., 2013. A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. Ocean Engineering, 71, pp.28-39.</p><p>Williams, J., Horsburgh, K.J., Williams, J.A. and Proctor, R.N., 2016. Tide and skew surge independence: New insights for flood risk. Geophysical Research Letters, 43(12), pp.6410-6417.</p>


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Rouzbeh Nazari ◽  
Haralambos Vasiliadis ◽  
Maryam Karimi ◽  
Md Golam Rabbani Fahad ◽  
Stanley Simon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document