scholarly journals Comparing high resolution WRF-VPRM simulations and two global CO<sub>2</sub> transport models with coastal tower measurements of CO<sub>2</sub>

2009 ◽  
Vol 6 (5) ◽  
pp. 807-817 ◽  
Author(s):  
R. Ahmadov ◽  
C. Gerbig ◽  
R. Kretschmer ◽  
S. Körner ◽  
C. Rödenbeck ◽  
...  

Abstract. In order to better understand the effects that mesoscale transport has on atmospheric CO2 distributions, we have used the atmospheric WRF model coupled to the diagnostic biospheric model VPRM, which provides high resolution biospheric CO2 fluxes based on MODIS satellite indices. We have run WRF-VPRM for the period from 16 May to 15 June in 2005 covering the intensive period of the CERES experiment, using the CO2 fields from the global model LMDZ for initialization and lateral boundary conditions. The comparison of modeled CO2 concentration time series against observations at the Biscarosse tower and against output from two global models – LMDZ and TM3 – clearly reveals that WRF-VPRM can capture the measured CO2 signal much better than the global models with lower resolution. Also the diurnal variability of the atmospheric CO2 field caused by recirculation of nighttime respired CO2 is simulated by WRF-VRPM reasonably well. Analysis of the nighttime data indicates that with high resolution modeling tools such as WRF-VPRM a large fraction of the time periods that are impossible to utilize in global models, can be used quantitatively and may help to constrain respiratory fluxes. The paper concludes that we need to utilize a high-resolution model such as WRF-VPRM to use continental observations of CO2 concentration data with more spatial and temporal coverage and to link them to the global inversion models.

2008 ◽  
Vol 5 (6) ◽  
pp. 4745-4776 ◽  
Author(s):  
R. Ahmadov ◽  
C. Gerbig ◽  
R. Kretschmer ◽  
S. Körner ◽  
C. Rödenbeck ◽  
...  

Abstract. In order to better understand the effects that mesoscale transport has on atmospheric CO2 distributions, we have used the WRF model coupled to the diagnostic biospheric model VPRM, which provides high-resolution biospheric CO2 fluxes based on MODIS satellite indices. We have run WRF-VPRM for the period from 16 May to 15 June in 2005 covering the intensive period of the CERES experiment, using the CO2 fields from the global model LMDZ for initialization and lateral boundary conditions. The comparison of modeled CO2 concentration time series against observations at the Biscarosse tower and against output from two global models – LMDZ and TM3 – clearly reveals that WRF-VPRM can capture the measured CO2 signal much better than the global models with lower resolution. Also the diurnal variability of the atmospheric CO2 field caused by recirculation of nighttime respired CO2 is simulated by WRF-VRPM reasonably well. Analysis of the nighttime data indicates that with high resolution modeling tools such as WRF-VPRM a large fraction of the time periods that are impossible to utilize in global models, can be used quantitatively and help constraining respiratory fluxes. The paper concludes that we need to utilize a high-resolution model such as WRF-VPRM to use continental observations of CO2 concentration data with more spatial and temporal coverage and to link them to the global inversion models.


2011 ◽  
Vol 11 (3) ◽  
pp. 6875-6917
Author(s):  
D. Pillai ◽  
C. Gerbig ◽  
R. Ahmadov ◽  
C. Rödenbeck ◽  
R. Kretschmer ◽  
...  

Abstract. Accurate simulation of the spatial and temporal variability of tracer mixing ratios over complex terrain is challenging, but essential in order to utilize measurements made in complex orography (e.g. mountain and coastal sites) in an atmospheric inverse framework to better estimate regional fluxes of these trace gases. This study investigates the ability of high-resolution modeling tools to simulate meteorological and CO2 fields around Ochsenkopf tall tower, situated in Fichtelgebirge mountain range – Germany (1022 m a.s.l.; 50°1'48'' N, 11°48'30'' E). We used tower measurements made at different heights for different seasons together with the measurements from an aircraft campaign. Two tracer transport models – WRF (Eulerian based) and STILT (Lagrangian based), both with a 2 km horizontal resolution – are used together with the satellite-based biospheric model VPRM to simulate the distribution of atmospheric CO2 concentration over Ochsenkopf. The results suggest that the high-resolution models can capture diurnal, seasonal and synoptic variability of observed mixing ratios much better than coarse global models. The effects of mesoscale transports such as mountain-valley circulations and mountain-wave activities on atmospheric CO2 distributions are reproduced remarkably well in the high-resolution models. With this study, we emphasize the potential of using high-resolution models in the context of inverse modeling frameworks to utilize measurements provided from mountain or complex terrain sites.


2011 ◽  
Vol 51 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Amir Givati ◽  
Barry Lynn ◽  
Yubao Liu ◽  
Alon Rimmer

AbstractThe Weather Research and Forecasting (WRF) model was employed to provide precipitation forecasts during the 2008/09 and 2009/10 winters (wet season) for Israel and the surrounding region where complex terrain dominates. The WRF precipitation prediction has been coupled with the Hydrological Model for Karst Environment (HYMKE) to forecast the upper Jordan River streamflow. The daily WRF precipitation forecasts were verified against the measurements from a dense network of rain gauges in northern and central Israel, and the simulation results using the high-resolution WRF indicated good agreement with the actual measurements. The daily precipitation amount calculated by WRF at rain gauges located in the upper parts of the Jordan River basin showed good agreement with the actual measurements. Numerical experiments were carried out to test the impact of the WRF model resolution and WRF microphysical schemes, to determine an optimal model configuration for this application. Because of orographic forcing in the region, it is necessary to run WRF with a 4–1.3-km grid increment and with sophisticated microphysical schemes that consider liquid water, ice, snow, and graupel to produce quality precipitation predictions. The hydrological modeling system that ingests the high-resolution WRF forecast precipitation produced good results and improved upon the operational streamflow forecast method for the Jordan River that is now in use. The modeling tools presented in this study are used to support the water-resource-assessment process and studies of seasonal hydroclimatic forecasting in this region.


2017 ◽  
Vol 28 (2) ◽  
pp. 111 ◽  
Author(s):  
Graeme I. Pearman ◽  
John R. Garratt ◽  
Paul J. Fraser

The potential for carbon dioxide (CO2) in the atmosphere to influence global surface temperatures was first recognized in the mid-nineteenth century. Even so, high-precision measurements of atmospheric CO2 concentration were not commenced until the International Geophysical Year (1957–8), following concerns of the climatic impact of increased use of fossil fuels and the concomitant release of CO2 into the atmosphere. In Australia, an early (1960s–70s) interest in the high-precision measurement of CO2 concentration was stimulated by a study of the photosynthesis and respiration of awheat crop. This study conducted in north-easternVictoria during 19717–2 led two young CSIRO scientists, J. R. Garratt and G. I. Pearman, encouraged by their Chief, C. H. B. Priestley, to extend micro-environment CO2 studies to larger-scale measurements of CO2 concentration in the background atmosphere. The significant extension of the observation programme required refined measurement techniques to improve both the precision and absolute comparability with observations made by laboratories overseas. Joined in 1974 by P. J. Fraser, they identified the impact of pressure broadening on calibration techniques used in the non-dispersive infrared absorption method of CO2 concentration measurement. This, in turn, led to improved inter-comparability of CO2 concentration data collected around the globe. Acomprehensive aircraft-based air sampling programmewas established in the early 1970s, leading to increased understanding of the time and space variability of CO2 concentration throughout the depth of the troposphere and lower stratosphere in the mid-latitudes of the Southern Hemisphere. In turn this led to: (i) the establishment of a permanent ground-based observatory at Cape Grim, north-western Tasmania; (ii) the development of carbon cycle models; and (iii) measurements of 12CO2, 13CO2 and 14CO2 relative abundances in current and past atmospheres, the last from air samples trapped in ice cores (described in Part 2, the companion paper). The accumulated data from these studies, together with those collected by international colleagues, form the basis of our understanding of the changes of CO2 concentration over thousands of years. In addition, the data have contributed to our understanding of the mechanisms of past and present biogeochemical cycling of CO2 that provides the predictive basis for future changes in CO2 concentration.


2011 ◽  
Vol 11 (15) ◽  
pp. 7445-7464 ◽  
Author(s):  
D. Pillai ◽  
C. Gerbig ◽  
R. Ahmadov ◽  
C. Rödenbeck ◽  
R. Kretschmer ◽  
...  

Abstract. Accurate simulation of the spatial and temporal variability of tracer mixing ratios over complex terrain is challenging, but essential in order to utilize measurements made in complex orography (e.g. mountain and coastal sites) in an atmospheric inverse framework to better estimate regional fluxes of these trace gases. This study investigates the ability of high-resolution modeling tools to simulate meteorological and CO2 fields around Ochsenkopf tall tower, situated in Fichtelgebirge mountain range- Germany (1022 m a.s.l.; 50°1′48" N, 11°48′30" E). We used tower measurements made at different heights for different seasons together with the measurements from an aircraft campaign. Two tracer transport models – WRF (Eulerian based) and STILT (Lagrangian based), both with a 2 km horizontal resolution – are used together with the satellite-based biospheric model VPRM to simulate the distribution of atmospheric CO2 concentration over Ochsenkopf. The results suggest that the high-resolution models can capture diurnal, seasonal and synoptic variability of observed mixing ratios much better than coarse global models. The effects of mesoscale transports such as mountain-valley circulations and mountain-wave activities on atmospheric CO2 distributions are reproduced remarkably well in the high-resolution models. With this study, we emphasize the potential of using high-resolution models in the context of inverse modeling frameworks to utilize measurements provided from mountain or complex terrain sites.


Sign in / Sign up

Export Citation Format

Share Document