scholarly journals Modelling burned area in Africa

2010 ◽  
Vol 7 (10) ◽  
pp. 3199-3214 ◽  
Author(s):  
V. Lehsten ◽  
P. Harmand ◽  
I. Palumbo ◽  
A. Arneth

Abstract. The simulation of current and projected wildfires is essential for predicting crucial aspects of vegetation patterns, biogeochemical cycling as well as pyrogenic emissions across the African continent. This study uses a data-driven approach to parameterize two burned area models applicable to dynamic vegetation models (DVMs) and Earth system models (ESMs). We restricted our analysis to variables for which either projections based on climate scenarios are available, or that are calculated by DVMs, and we consider a spatial scale of one degree as the scale typical for DVMs and ESMs. By using the African continent here as an example, an analogue approach could in principle be adopted for other regions, for global scale dynamic burned area modelling. We used 9 years of data (2000–2008) for the variables: precipitation over the last dry season, the last wet season and averaged over the last 2 years, a fire-danger index (the Nesterov index), population density, and annual proportion of area burned derived from the MODIS MCD45A1 product. Two further variables, tree and herb cover were only available for 2001 as a remote sensing product. Since the effect of fires on vegetation depends strongly on burning conditions, the timing of wildfires is of high interest too, and we were able to relate the seasonal occurrence of wildfires to the daily Nesterov index. We parameterized two generalized linear models (GLMs), one with the full variable set (model VC) and one considering only climate variables (model C). All introduced variables resulted in an increase in model performance. Model VC correctly predicts the spatial distribution and extent of fire prone areas though the total variability is underrepresented. Model VC has a much lower performance in both aspects (correlation coefficient of predicted and observed ratio of burned area: 0.71 for model VC and 0.58 for model C). We expect the remaining variability to be attributed to additional variables which are not available at a global scale and thus not incorporated in this study as well as its coarse resolution. An application of the models using climate hindcasts and projections ranging from 1980 to 2060 resulted in a strong decrease of burned area of ca. 20–25%. Since wildfires are an integral part of land use practices in Africa, their occurrence is an indicator of areas favourable for food production. In absence of other compensating land use changes, their projected decrease can hence be interpreted as a indicator for future loss of such areas.

2010 ◽  
Vol 7 (3) ◽  
pp. 4385-4424 ◽  
Author(s):  
V. Lehsten ◽  
P. Harmand ◽  
I. Palumbo ◽  
A. Arneth

Abstract. The simulation of current and projected wildfires is crucial for predicting vegetation as well as pyrogenic emissions in the African continent. This study uses a data-driven approach to parameterize burned area models applicable to dynamic vegetation models (DVMs) and global circulation models (GCMs). Therefore we restricted our analysis to variables for which either projections based on climate scenarios are available, or which are calculated by DVMs and the spatial scale to one degree spatial resolution, a common scale for DVMs as well as GCMs. We used 9 years of data (2000–2008) for the variables tree and herb cover, precipitation over the last dry season, wet season and averaged over the last 2 years, a fire-danger index (the Nesterov index), population density and an annual proportion of area burned derived from the MODIS MCD45A1 product. Since the effect of fires on vegetation depends strongly on burning conditions, the timing of wildfires is of high interest too. We related the seasonal occurrence of wildfires to the Nesterov index and found a lognormal relationship with a maximum at a value of 104. We parameterized two generalized linear models, one with the full variable set (model I) and one (model II) considering only climate variables. All introduced variables resulted in an increase in model performance. Model I correctly predicts the spatial distribution and extent of fire prone areas though the total variability is underrepresented. Model II has a much lower performance in both aspects (correlation coefficient of predicted and observed ratio of burned area: 0.71 model I and 0.58 model II). An application of the models with simulated climate data ranging from 1980 to 2060 resulted in a strong decrease of burned area of ca. 20–25%. Since wildfires are an integral part of land use practices in Africa, this indicates a high loss in areas favourable for food production.


Botany ◽  
2020 ◽  
Vol 98 (9) ◽  
pp. 479-488
Author(s):  
Francisco E. Fontúrbel

Mistletoes are a group of flowering plants that have developed a parasitic lifeform through complex eco-evolutionary processes. Despite being considered a pest, mistletoes represent a keystone forest resource and are involved in complex plant–plant and plant–animal interactions. Their parasitic lifeform and specialized ecological interactions make mistletoes an ideal model with which to understand the effects of anthropogenic disturbances in a changing world. The accelerated growth of the human population has altered all ecosystems on Earth, leading to biodiversity loss. Land-use changes (involving habitat loss, fragmentation, degradation, and transformation processes) can alter the ecological scenario for mistletoe by altering hosts, mutualists, and nutrient cycling. Those changes may have large consequences at the community level, changing the spatial structure of mistletoes, as well as interaction effectiveness, facilitation process, interaction disruption, and novel interactions with invasive species, leading to non-analog communities in the long run. Furthermore, climate change effects operate on a global scale, enhancing the effects of land-use changes. As temperatures increase, many species would alter their distribution and phenology, potentially causing spatial and temporal mismatches. But more critical is the fact that water stress is likely to disrupt key ecological interactions. Thus, mistletoes can provide valuable insights for what we can expect in the future, as a result of human disturbances.


2019 ◽  
Vol 146 (2) ◽  
pp. 145-170
Author(s):  
Carla K. M. Nantke ◽  
Patrick J. Frings ◽  
Johanna Stadmark ◽  
Markus Czymzik ◽  
Daniel J. Conley

AbstractSi fluxes from the continents to the ocean are a key element of the global Si cycle. Due to the ability of coastal ecosystems to process and retain Si, the ‘coastal filter’ has the potential to alter Si fluxes at a global scale. Coastal zones are diverse systems, sensitive to local environmental changes, where Si cycling is currently poorly understood. Here, we present the first palaeoenvironmental study of estuarine biogenic silica (BSi) fluxes and silicon isotope ratios in diatoms (δ30Sidiatom) using hand-picked diatom frustules in two sediment cores (CBdist and CBprox) from the Chesapeake Bay covering the last 12000 and 8000 years, respectively. Constrained by the well-understood Holocene evolution of the Chesapeake Bay, we interpret variations in Si cycling in the context of local climate, vegetation and land use changes. δ30Sidiatom varies between + 0.8 and + 1.7‰ in both sediment cores. A Si mass balance for the Chesapeake Bay suggests much higher rates of Si retention (~ 90%) within the system than seen in other coastal systems. BSi fluxes for both sediment cores co-vary with periods of sea level rise (between 9500 and 7500 a BP) and enhanced erosion due to deforestation (between 250 and 50 a BP). However, differences in δ30Sidiatom and BSi flux between the sites emphasize the importance of the seawater/freshwater mixing ratios and locally variable Si inputs from the catchment. Further, we interpret variations in δ30Sidiatom and the increase in BSi fluxes observed since European settlement (~ 250 a BP) to reflect a growing human influence on the Si cycle in the Chesapeake Bay. Thereby, land use change, especially deforestation, in the catchment is likely the major mechanism.


2020 ◽  
pp. 1-13
Author(s):  
K. V. Suryabhagavan ◽  
Mintesnot Berhanu ◽  
Bezawork Afework ◽  
Afework Bekele ◽  
M. Balakrishnan

The African Civet (Civettictis Civetta Shreber, 1778) is one of the important natural animal resources of Ethiopia. Ethiopia is the major producer of the Civet perineal gland secretion (known as “civet”) used extensively as a base in perfume industry. However, there is no improvement in civet farming processes in rural Ethiopia, and the farmers still live in a poor state. Majority of rural population in Ethiopia is depending on agriculture, and hence land-use changes during the past couple of decades are mostly linked to agricultural development. Present study was undertaken to predict the spatial distribution of land-use and land-cover and habitats of the African Civet here in after referred as civet(s) in Illu-Abbabora Zone, Southwest Ethiopia. Landsat images of three years: 1985, 2000 and 2018 were classified to generate land-use/land-cover maps, locate forests and other land classes. Results of the study revealed that forest and wetland habitats decreased by an estimated 11.12 km2/yr-1 and 2.39 km2/yr-1, respectively during the period of 1985-2018. In contrast, the extent of agricultural land, urban area and Gumro tea plantation increased by an estimated 13.36 km2/yr-1, 0.59 km2/yr-1 and 0.43 km2/yr-1, respectively. Habitat suitability approach was found to have great potential in predicting potential habitats of the civets through complex non-linear models.


2021 ◽  
Author(s):  
Inês S. Martins ◽  
Maria Dornelas ◽  
Mark Vellend ◽  
Chris D. Thomas

AbstractLand-use change is widely regarded as a simplifying and homogenising force in nature. In contrast, analysing global land-use reconstructions from the 10th to 20th centuries, we found progressive increases in the number, evenness, and diversity of ecosystems (including human-modified land-use types) across the globe. Ecosystem diversity increased more rapidly after ∼1700CE, then slowed or partially reversed (depending on the metric) following the mid-20th century acceleration of human impacts. Differentiation also generally increased across space, with homogenization only evident in the presence-absence analysis of ecosystem types at the global scale. Our results suggest that human land-use changes have primarily driven increases in ecosystem diversity over the last millennium.


Water SA ◽  
2018 ◽  
Vol 44 (1 January) ◽  
Author(s):  
W Gumindoga ◽  
DT Rwasoka ◽  
N Ncube ◽  
E Kaseke ◽  
T Dube

The aim of this study was to quantify the upstream land-use and landcover changes and assess their effect on Ruti Dam levels and water availability in Nyazvidzi catchment. Remote-sensing techniques, hydrologic modelling and statistical inference were applied. Spatial landcover dynamics were derived from Landsat satellite data for the years 1984, 1990, 1993, 1996, 2003, 2008, and 2013 using the maximum likelihood classification technique. Results showed that forests and shrubs decreased by 36% between 1984 and 2013 whilst cultivated areas increased by 13% over the same period. The HEC-HMS rainfall-runoff model was used to simulate steamflow for the Nyazvidzi catchment, Zimbabwe. For the calibration period (2000–2001), a  satisfactory Nash–Sutcliffe efficiency (NSE) model peformance of 0.71 and relative volume error (RVE) of 10% were obtained. Model validation (1995—1997) gave a NSE of 0.61 and RVE of 12%. We applied the Mann-Kendall trend test to assess for monotonic trends in runoff over the study period and the results showed that there were significant decreases in observed runoff at Station E140 (monthly time scale) and at Stations E62 and E140 (seasonal time scale). Results showed that the wet season (Nov–Feb) had higher mean water balance values with an excess runoff of 8.12 mm/month. The dry season (April—Sept) had lower mean water balance values, with the lowest at 0.04 mm/month. Strong positive relationships (r2) between dam levels and land-use changes were obtained as follows: bare (0.95), cultivation (0.76) and forests (0.98). The relationship between runoff generated and land-use changes was found to be relatively weaker (0.54 for forests, 0.51 for bare and 0.14 for cultivation). Findings of this study underscore the relevance of applying hydrological models, remote sensing and statistical inference in quantifying and detecting environmental changes, as well as how they affect the availability and the quality of water resources in space and time.


2008 ◽  
Vol 35 (2) ◽  
pp. 117-124 ◽  
Author(s):  
J. K. MWORIA ◽  
J. I. KINYAMARIO ◽  
J. M. GITHAIGA

SUMMARYIn Kenya, lands surrounding wildlife protected areas (PAs), referred to as dispersal areas, have undergone widespread land use changes, but these have been little studied. This study investigated impacts of different land use types on wildlife distribution and composition. Transect data from stratified random sampling based on land use and vegetation type were analysed using correlation and canonical correspondence analysis (CCA). Household density and cultivation intensity were negatively correlated with grass cover and were greatest on small-scale farms and lowest in a dedicated PA. Three patterns of wildlife distribution were identified. Wildlife density in communal grazing and the PA was significantly higher than on other land use types. While most wildlife used pastoral ranches in the wet season, larger herbivores moved to the PA during the dry season. Wildlife density along the grass cover gradient, which was a disturbance gradient, was dome shaped, indicating that wildlife tolerated moderate levels of disturbance. The primary factors influencing wildlife distribution were vegetation type and proximity to water sources in the dry and wet seasons, respectively. The apparent anomaly in the wet season is attributed to wildlife moving from Chyulu, which lacked seasonal ponds, to the lowland Masaai ranches, which had plenty of ponds. In both seasons, cattle density was the most important secondary factor. To mitigate declining wildlife trends, management should ensure a heterogeneity of vegetation types is maintained and wildlife retain access to seasonal water sources.


2021 ◽  
Author(s):  
Jed Meunier

Abstract BackgroundThe Lake States experienced unprecedented land use changes during Euro-American settlement (settlement) including large, destructive fires. Forest changes were radical in this region and largely attributed to anomalous settlement era fires in slash (cumulation of tops and branches) following cutover logging. In this study I place settlement era fires in a historical context by examining fire scar data in comparison to historical accounts and investigate fire-vegetation-climate relationships within a 400-year context.ResultsSettlement era fires (1851–1947) were less frequent than historical fires (1548–1850) with little evidence that slash impacted fire frequency or occurrence at site or ecoregion scales. Only one out of 25 sites had more frequent settlement era fires and that site was a pine forest that had never been harvested. Settlement era fires were similar across disparate ecoregions and forest types including in areas with very different land use history. Settlement fires tended to burn during significantly dry periods, the same conditions driving large fires for the past 400 years. The burned area in the October 8, 1871 Peshtigo Fire was comprised of mesic forests where fuels were always abundant and high-severity fires would be expected given the conditions in 1871. Furthermore, slash would not have been a major contributor to fire behavior or effects in the Peshtigo Fire.ConclusionsHistorical records, like written accounts of fires and settlement era survey records, provide a reference point for landscape changes but lack temporal depth to understand forest dynamics or provide a mechanistic understanding of changes. While settlement land use changes of Lake States forests were pervasive, fires were not the ultimate degrading factor, but rather likely one of the few natural processes still at work.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 476 ◽  
Author(s):  
Fengping Li ◽  
Guangxin Zhang ◽  
Hongyan Li ◽  
Wenxi Lu

The objectives of this study were to assess land use changes and their hydrological impacts in the Nenjiang River Basin (NRB). The Soil and Water Assessment Tool (SWAT) model was employed to evaluate the impacts of land use changes. The Cellular Automata-Markov model was used to predict a land use map in 2038. Streamflow under each land use state was simulated by the SWAT model. The results showed that there was a significant expansion of agriculture area at the expense of large areas of grassland, wetland, and forest during 1975–2000. The land use changes during the period of 1975 to 2000 had decreased the water yield (3.5%), surface runoff (1.7%), and baseflow (19%) while they increased the annual evapotranspiration (2.1%). For impacts of individual land use type, the forest proved to have reduced streamflow in the flood season (10%–28%) and increased surface runoff in the drought season (20%–38%). Conversely, grassland, dry land, and paddy land scenarios resulted in increase of streamflow during summer months by 7%–37% and a decrease of streamflow in the cold seasons by 11.7%–59.7%. When the entire basin was changed to wetland, streamflow reduced over the whole year, with the largest reduction during January to March. The 2038 land use condition is expected to increase the annual water yield, surface runoff and wet season flow, and reduce evapotranspiration and baseflow. These results could help to improve sustainable land use management and water utilization in the NRB.


Sign in / Sign up

Export Citation Format

Share Document