scholarly journals Labile Fe(II) concentrations in the Atlantic sector of the Southern Ocean along a transect from the subtropical domain to the Weddell Sea Gyre

2011 ◽  
Vol 8 (9) ◽  
pp. 2461-2479 ◽  
Author(s):  
G. Sarthou ◽  
E. Bucciarelli ◽  
F. Chever ◽  
S. P. Hansard ◽  
M. González-Dávila ◽  
...  

Abstract. Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57° S (February–March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060 nM south of 47° S, representing between 39 % and 63 % of dissolved Fe (DFe). Apparent biological production of Fe(II) was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70 % of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as ~0.030–0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4°C were measured in the upper and deep waters and ranged from 2.9 to 11.3 min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.

2011 ◽  
Vol 8 (2) ◽  
pp. 4163-4208 ◽  
Author(s):  
G. Sarthou ◽  
E. Bucciarelli ◽  
F. Chever ◽  
S. P. Hansard ◽  
M. Gonzalez-Davila ◽  
...  

Abstract. Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57° S (February–March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060 nM south of 47° S, representing between 39% and 63% of dissolved Fe (DFe). Biological production was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70% of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as ~0.030–0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4 °C were measured in the upper and deep waters and ranged from 2.9 to 11.3 min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.


2014 ◽  
Vol 11 (7) ◽  
pp. 1981-2001 ◽  
Author(s):  
I. Borrione ◽  
O. Aumont ◽  
M. C. Nielsdóttir ◽  
R. Schlitzer

Abstract. In high-nutrient low-chlorophyll waters of the western Atlantic sector of the Southern Ocean, an intense phytoplankton bloom is observed annually north of South Georgia. Multiple sources, including shallow sediments and atmospheric dust deposition, are thought to introduce iron to the region. However, the relative importance of each source is still unclear, owing in part to the scarcity of dissolved iron (dFe) measurements in the South Georgia region. In this study, we combine results from a recently published dFe data set around South Georgia with a coupled regional hydrodynamic and biogeochemical model to further investigate iron supply around the island. The biogeochemical component of the model includes an iron cycle, where sediments and dust deposition are the sources of iron to the ocean. The model captures the characteristic flow patterns around South Georgia, hence simulating a large phytoplankton bloom to the north (i.e. downstream) of the island. Modelled dFe concentrations agree well with observations (mean difference and root mean square errors of ~0.02 nM and ~0.81 nM) and form a large plume to the north of the island that extends eastwards for more than 800 km. In agreement with observations, highest dFe concentrations are located along the coast and decrease with distance from the island. Sensitivity tests indicate that most of the iron measured in the main bloom area originates from the coast and very shallow shelf-sediments (depths < 20 m). Dust deposition exerts almost no effect on surface chlorophyll a concentrations. Other sources of iron such as run-off and glacial melt are not represented explicitly in the model, however we discuss their role in the local iron budget.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


Zootaxa ◽  
2009 ◽  
Vol 2277 (1) ◽  
pp. 33-52
Author(s):  
MARINA V. MALYUTINA ◽  
ANGELIKA BRANDT

Three new species of the genus Belonectes Wilson & Hessler, 1981, from the munnopsid subfamily Eurycopinae Hansen are described from the deep Weddell Sea, Atlantic sector of the Southern Ocean. Belonectes grasslei sp. nov., B. stoddarti sp. nov., and B. daytoni sp. nov. are the first species of the genus described from the region: previously only two species of Belonectes were known from the northeastern Atlantic and the Peru-Chile Trench, the southeastern Pacific. The modified diagnosis of the genus Belonectes and a key to the species of the genus are presented. The pattern of the total ventral sculpture of the natasome, a medial lobe of article 4 of the maxillipedal palp which is larger than article 5 and the navicular male pleopod 1 with its deep keel are suggested to be additional important generic characters of Belonectes. The most useful characters to distinguish species of Belonectes are the size of article 1 of the antennula, the shape and size of the articles 3–5 of the maxillipedal palp, the shape of the distal margin of the male pleopod 1, the shape of distolateral part of the protopod of the male pleopod 2, the size and shape of the preanal ridge, and the size of the exopod of the uropod.


2021 ◽  
Author(s):  
Banafsheh Najjarifarizhendi ◽  
Gabriele Uenzelmann-Neben

&lt;p&gt;High-resolution 2D multichannel seismic data collected by the Alfred Wegener Institute in 2019 across the Maurice Ewing Bank, the high-altitude easternmost section of the Falkland Plateau in the SW South Atlantic, are integrated with information from DSDP Leg 36, Sites 327, 329, and 330 and Leg 71 Site 511. A seismostratigraphic model is defined, including five units ranging in age from the Middle Jurassic to Quaternary and are interpreted with respect to the evolutional history of the oceanic circulations in the South Atlantic sector of the Southern Ocean. Sedimentary sequences of late Cretaceous and early Paleogene include little and restricted evidence of current activity, attributable to shallow-intermediate depth connections between the developing South Atlantic and Southern Ocean. In contrast, sedimentary sequences of the late Eocene/Oligocene and Neogene reveal a strong history of current-related erosion and deposition. These features exhibit specific water-depth expressions attesting to the long-term activity of different water masses, in stable circulation patterns as those of the present day. We thus suggest that proto-Upper and -Lower Circumpolar Deep Waters have been shaping the bank since the Oligocene. This implies that this bathymetric high has been acting as a barrier for the deep and bottom water masses flowing within the Antarctic Circumpolar Current since its establishment about the Eocene-Oligocene boundary.&lt;/p&gt;


2017 ◽  
Vol 47 (12) ◽  
pp. 2887-2906 ◽  
Author(s):  
Raffaele Ferrari ◽  
Louis-Philippe Nadeau ◽  
David P. Marshall ◽  
Lesley C. Allison ◽  
Helen L. Johnson

AbstractZonally averaged models of the ocean overturning circulation miss important zonal exchanges of waters between the Atlantic and Indo-Pacific Oceans. A two-layer, two-basin model that accounts for these exchanges is introduced and suggests that in the present-day climate the overturning circulation is best described as the combination of three circulations: an adiabatic overturning circulation in the Atlantic Ocean associated with transformation of intermediate to deep waters in the north, a diabatic overturning circulation in the Indo-Pacific Ocean associated with transformation of abyssal to deep waters by mixing, and an interbasin circulation that exchanges waters geostrophically between the two oceans through the Southern Ocean. These results are supported both by theoretical analysis of the two-layer, two-basin model and by numerical simulations of a three-dimensional ocean model.


2001 ◽  
Vol 56 (2) ◽  
pp. 191-198 ◽  
Author(s):  
David A. Hodell ◽  
Sharon L. Kanfoush ◽  
Aldo Shemesh ◽  
Xavier Crosta ◽  
Christopher D. Charles ◽  
...  

AbstractAntarctic surface waters were warm and ice free between 10,000 and 5000 cal yr B.P., as judged from ice-rafted debris and microfossils in a piston core at 53°S in the South Atlantic. This evidence shows that about 5000 cal yr B.P., sea surface temperatures cooled, sea ice advanced, and the delivery of ice-rafted detritus (IRD) to the subantarctic South Atlantic increased abruptly. These changes mark the end of the Hypsithermal and onset of Neoglacial conditions. They coincide with an early Neoglacial advance of mountain glaciers in South America and New Zealand between 5400 and 4900 cal yr B.P., rapid middle Holocene climate changes inferred from the Taylor Dome Ice Core (Antarctica), cooling and increased IRD in the North Atlantic, and the end of the African humid period. The near synchrony and abruptness of all these climate changes suggest links among the tropics and both poles that involved nonlinear response to gradual changes in Northern Hemisphere insolation. Sea ice expansion in the Southern Ocean may have provided positive feedback that hastened the end of the Hypsithermal and African humid periods in the middle Holocene.


2007 ◽  
Vol 37 (2) ◽  
pp. 259-276 ◽  
Author(s):  
Reiner Schlitzer

Abstract A coarse-resolution global model with time-invariant circulation is fitted to hydrographic and tracer data by means of the adjoint method. Radiocarbon and chlorofluorocarbon (CFC-11 and CFC-12) data are included to constrain deep and bottom water transport rates and spreading pathways as well as the strength of the global overturning circulation. It is shown that realistic global ocean distributions of hydrographic parameters and tracers can be obtained simultaneously. The model correctly reproduces the deep ocean radiocarbon field and the concentrations gradients between different basins. The spreading of CFC plumes in the deep and bottom waters is simulated in a realistic way, and the spatial extent as well as the temporal evolution of these plumes agrees well with observations. Radiocarbon and CFC observations place upper bounds on the northward transports of Antarctic Bottom Water (AABW) into the Pacific, Atlantic, and Indian Oceans. Long-term mean AABW transports larger than 5 Sv (Sv ≡ 106 m3 s−1) through the Vema and Hunter Channels in the South Atlantic and net AABW transports across 30°S into the Indian Ocean larger than 10 Sv are found to be incompatible with CFC data. The rates of equatorward deep and bottom water transports from the North Atlantic and Southern Ocean are of similar magnitude (15.7 Sv at 50°N and 17.9 Sv at 50°S). Deep and bottom water formation in the Southern Ocean occurs at multiple sites around the Antarctic continent and is not confined to the Weddell Sea. A CFC forecast based on the assumption of unchanged abyssal transports shows that by 2030 the entire deep west Atlantic exhibits CFC-11 concentrations larger than 0.1 pmol kg−1, while most of the deep Indian and Pacific Oceans remain CFC free. By 2020 the predicted CFC concentrations in the deep western boundary current (DWBC) in the North Atlantic exceed surface water concentrations and the vertical CFC gradients start to reverse.


Sign in / Sign up

Export Citation Format

Share Document