scholarly journals Environmental control on the variability of DMS and DMSP in the Mauritanian upwelling region

2012 ◽  
Vol 9 (3) ◽  
pp. 1041-1051 ◽  
Author(s):  
C. Zindler ◽  
I. Peeken ◽  
C. A. Marandino ◽  
H. W. Bange

Abstract. Dimethylsulphide (DMS) and dissolved and particulate dimethylsulfoniopropionate (DMSPd, DMSPp) were measured in near-surface waters along the Mauritanian coast, Northwest Africa, during the upwelling season in February 2008. DMS, DMSPd and DMSPp surface concentrations of up to 10 nmol L−1, 15 nmol L−1 and 990 nmol L−1, respectively, were measured. However, the DMS concentrations measured are in the low range compared to other upwelling regions. The maximum DMSPp concentration is the highest reported from upwelling regions so far, which might indicate that the Mauritanian upwelling is a hot spot for DMSP. Within the phytoplankton groups, dinoflagellates were identified as important contributors to DMS concentrations, while other algae seemed to have only a minor or no influence on DMS and DMSP concentrations. A pronounced switch from high DMSP to high DMS concentrations was observed when the nitrogen to phosphorus ratio (N:P) was below 7. The high DMS/DMSP ratios at N:P ratios <7 indicate that nitrogen limitation presumably triggered a switch from DMSP to DMS independent of the species composition. Our results underline the importance of coastal upwelling regions as a local source for surface seawater sulphur.

2011 ◽  
Vol 8 (4) ◽  
pp. 8591-8618
Author(s):  
C. Zindler ◽  
I. Peeken ◽  
C. A. Marandino ◽  
H. W. Bange

Abstract. Dimethylsulfide (DMS) and dissolved and particulate dimethylsulfoniopropionate (DMSPd, DMSPp) were measured in sea surface layer along the Mauritanian coast, Northwest Africa, during the upwelling season in February 2008. DMS, DMSPd and DMSPp surface concentrations of up to 10 nmol L−1, 15 nmol L−1 and 990 nmol L−1, respectively, were measured. The maximum DMSPp concentration is the highest reported from upwelling regions so far and indicates that the Mauritanian upwelling is a hot spot of DMSP and, thus, DMS production. Dinoflagellates were responsible for the DMS production. Other phytoplankton groups seemed to have only a minor or no influence on the DMS and DMSP production. Decreasing nitrogen (i.e. increasing nitrogen limitation) most likely triggered a switch from high DMSP production to high DMS production. It seems that both nitrogen limitation and the intensive solar radiation in the tropics induced stress in DMSP producing algae and activated their antioxidant system. Our results underline the importance of coastal upwelling regions as ecosystems with a pronounced temporal and spatial variability which result in high DMSP and DMS production.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199241 ◽  
Author(s):  
Yanan Wu ◽  
Jiakai Liu ◽  
Jiexiu Zhai ◽  
Ling Cong ◽  
Yu Wang ◽  
...  

Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Kämpf

Abstract. Satellite-derived chlorophyll a data using the standard NASA-OC3 (ocean colour) algorithm are strongly biased by coloured dissolved organic matter and suspended sediment of river discharges, which is a particular problem for the western Tasmanian shelf. This work reconstructs phytoplankton blooms in the study region using a quadratic regression between OC3 data and chlorophyll fluorescence based on the fluorescence line height (FLH) data. This regression is derived from satellite data of the nearby Bonney upwelling region, which is devoid of river influences. To this end, analyses of 10 years of MODIS-aqua satellite data reveal the existence of a highly productive ecosystem on the western Tasmanian shelf. The region normally experiences two phytoplankton blooms per annum. The first bloom occurs during late austral summer months as a consequence of upwelling-favourable coastal winds. Hence, the western Tasmanian shelf forms a previously unknown upwelling centre of the regional upwelling system, known as Great South Australian Coastal Upwelling System. The second phytoplankton bloom is a classical spring bloom also developing in the adjacent Tasman Sea. The author postulates that this region forms another important biological hot spot for the regional marine ecosystem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Jen Huang ◽  
Ming-Ta Lee ◽  
Kuei-Chen Huang ◽  
Kai-Jung Kao ◽  
Ming-An Lee ◽  
...  

AbstractThe release of anthropogenic radiocesium to the North Pacific Ocean (NPO) has occurred in the past 60 years. Factors controlling 137Cs (half-life, 30.2 year) and 134Cs (half-life, 2.06 year) activity concentrations in the Kuroshio east of Taiwan and the Taiwan Strait (latitude 20° N–27° N, longitude 116° E–123° E) remain unclear. This study collected seawater samples throughout this region and analyzed 134Cs and 137Cs activity concentrations between 2018 and 2019. A principal component analysis (PCA) was performed to analyze the controlling factors of radiocesium. Results of all 134Cs activity concentrations were below the detection limit (0.5 Bq m−3). Analyses of water column 137Cs profiles revealed a primary concentration peak (2.1–2.2 Bq m−3) at a depth range of 200–400 m (potential density σθ: 25.3 to 26.1 kg m−3). The PCA result suggests that this primary peak was related to density layers in the water column. A secondary 137Cs peak (1.90 Bq m−3) was observed in the near-surface waters (σθ = 18.8 to 21.4 kg m−3) and was possibly related to upwelling and river-to-sea mixing on the shelf. In the Taiwan Strait, 137Cs activity concentrations in the near-surface waters were higher in the summer than in the winter. We suggest that upwelling facilitates the vertical transport of 137Cs at the shelf break of the western NPO.


Author(s):  
Valentina Dobryakova ◽  
Natalya Moskvina ◽  
Andrey Dobryakov ◽  
Lilia Zhegalina ◽  
Ildar Idrisov

The information content and effectiveness of ecological research of the territory can be improved using the methods of multivariate analysis and mapping of the results. The article presents the analysis and mapping results of spatial and temporal trends of hydrocarbon pollution in the Tromjegan river basin for the period 2006–2018 using the tools of ArcGIS Pro. The informational and basic research is the data of local environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra. Pollution analysis was carried out on the basis of a detailed study of the geography of the source data using statistical calculations (minimum, average, maximum distances between sampling points, Getis-Ord Gi* index). Thematic maps were constructed using data averaged over the year. The spatial and temporal dynamics of hydrocarbons concentration in surface waters for 2006–2018 is analyzed using the “Hot Spot Analysis” tool. A temporary cluster section of hydrocarbons average annual concentration according to the Getis-Ord Gi* indicator allowed us to identify trends in the dynamics of indicators. Maps of hydrocarbons average annual concentration were compiled and the results of a spatial-temporal analysis of hydrocarbons average annual concentration in surface waters were presented. The identification of patterns in large arrays of long-term data and the consideration of the spatial component are necessary elements of modern environmental research. Analysis of the time series of average annual concentrations in the Tromjegan river basin showed a clear trend in the dynamics of hydrocarbon pollution. The findings can be the basis for making managerial decisions in the environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra.


2016 ◽  
Author(s):  
La Daana K Kanhai ◽  
Rick Officer ◽  
Ian O'Connor ◽  
Richard C Thompson

Microplastics are an issue of international concern due to the fact that these substances may potentially threaten biota by (i) causing physical harm, (ii) transporting persistent, bioaccumulating and toxic (PBT) substances and, (iii) leaching plastic additives. Within the world’s oceans, areas which experience coastal upwelling are biota rich due to their high levels of primary productivity. The assessment of microplastic presence in areas which experience coastal upwelling is vital as it will indicate whether microplastics are an issue of concern in areas which support key biological resources. The null hypothesis of the present study is that microplastic abundance will be lower in areas where there is upwelling. As such, the present study aims to investigate whether microplastic abundance in upwelled areas in the Atlantic Ocean is significantly different from non-upwelled areas. Based on an opportunistic voyage aboard the RV Polarstern, microplastics will be sampled in sub-surface waters along a diverse latitudinal gradient in the Atlantic Ocean i.e. from Bremerhaven (Germany) to Cape Town (South Africa). Based on the proposed route, it will be possible to determine microplastic levels at two areas of coastal upwelling in the Atlantic Ocean (i) Canary Upwelling Ecosystem (CUE) and (ii) Benguela Upwelling Ecosystem (BUE). The results will then be analysed to determine whether there was a statistically significant difference between ‘upwelled areas’ and ‘non-upwelled areas’.


2008 ◽  
Vol 25 (9) ◽  
pp. 1710-1716 ◽  
Author(s):  
Jiayi Pan ◽  
David A. Jay

Abstract The utility of the acoustic Doppler current profiler (ADCP) for sampling small time and space scales of coastal environments can be enhanced by mounting a high-frequency (1200 kHz) ADCP on an oscillating towed body. This approach requires both an external reference to convert the measured shears to velocities in the earth coordinates and a method to determine the towed body velocities. During the River Influence on the Shelf Ecosystems (RISE) project cruise, a high-frequency (1200 kHz) and narrowbeam ADCP with mode 12 sampling was mounted on a TRIAXUS oscillating towfish, which steers a 3D path behind the ship. This deployment approach extended the vertical range of the ADCP and allowed it to sample near-surface waters outside the ship’s wake. The measurements from a ship-mounted 1200-kHz narrowbeam ADCP are used as references for TRIAXUS ADCP data, and a method of overlapping bins is employed to recover the entire vertical range of the TRIAXUS ADCP. The TRIAXUS vehicle horizontal velocities are obtained by removing the derived ocean current velocity from the TRIAXUS ADCP measurements. The results show that the method is practical.


Sign in / Sign up

Export Citation Format

Share Document