scholarly journals Measurements of CO<sub>2</sub> exchange with an automated chamber system throughout the year: challenges in measuring nighttime respiration on porous peat soil

2013 ◽  
Vol 10 (8) ◽  
pp. 14195-14238 ◽  
Author(s):  
M. Koskinen ◽  
K. Minkkinen ◽  
P. Ojanen ◽  
M. Kämäräinen ◽  
T. Laurila ◽  
...  

Abstract. We built an automatic chamber system to measure greehouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpackin addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the nighttime respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the type of the fit (linear and polynomial), (2) the starting point of the fit after closing the chamber, (3) the length of the fit, (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u&amp;ast;). The best fitting method (the most robust, least random variation) was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If nighttime problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

2014 ◽  
Vol 11 (2) ◽  
pp. 347-363 ◽  
Author(s):  
M. Koskinen ◽  
K. Minkkinen ◽  
P. Ojanen ◽  
M. Kämäräinen ◽  
T. Laurila ◽  
...  

Abstract. We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.


2010 ◽  
Vol 5 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Miloslav Šimek ◽  
Václav Pižl

AbstractThe effects of Aporrectodea caliginosa earthworms on both carbon dioxide (CO2) accumulation in and emissions from soil, as well as the simultaneous impact of earthworms on soil microbiological properties were investigated in a microcosm experiment carried out over 5.5 months. Concentration of CO2 in soil air was greater at a depth of 15 cm when compared with a depth of 5 cm, but varied during the season both in control and earthworm-inhabited chambers. Peaks of CO2 concentrations at both depths occurred in both treatments during August, approximately 80 days after the experiment started. Generally, the presence of earthworms increased the CO2 concentration at 15-cm depth. Larger CO2 emissions were consistently recorded in conjunction with higher amounts of CO2 in soil air when chambers were inhabited by earthworms. The total CO2 emissions during the experimental period covering 161 days were estimated at 118 g CO2-C m−2 and 99 g CO2-C m−2 from chambers with and without earthworms respectively. Moreover, the presence of earthworms increased microbial biomass in the centre and at the bottom of chambers, and enhanced both dehydrogenase activity and nitrifying enzyme activity in the soils. We suggest that the effect of earthworms on both the enhanced soil accumulation of CO2 as well as emissions of CO2 was mostly indirect, due to the impacts of earthworms on soil microbial community.


2017 ◽  
Vol 68 (9) ◽  
pp. 1585 ◽  
Author(s):  
Stephen R. Midway ◽  
Caleb T. Hasler ◽  
Tyler Wagner ◽  
Cory D. Suski

Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2 (pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96P. promelas were consumed (n=96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.


2020 ◽  
Vol 10 (18) ◽  
pp. 6402
Author(s):  
Stefano Parracino ◽  
Simone Santoro ◽  
Luca Fiorani ◽  
Marcello Nuvoli ◽  
Giovanni Maio ◽  
...  

Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically challenging, but we can retrieve useful information from magmatic/geological process studies for the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements, which is unsafe for operators and deleterious for equipment. In order to overcome these limitations, a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been developed as part of the ERC (European Research Council) Project “BRIDGE”, for sensitive, remote, and safe real-time CO2 observations. Here, we report on data collection, processing techniques, and the most significant findings of the experimental campaigns carried out at the most hazardous volcanic areas in Italy: Pozzuoli Solfatara (Phlegraen Fields), Stromboli, and Mt. Etna. The BrIdge voLcanic LIdar—BILLI has successfully obtained accurate measurements of in-plume CO2 concentration and flux. In addition, wind velocity has also been retrieved. It has been shown that the measurements of CO2 concentration performed by BILLI are comparable to those carried out by volcanologists with other standard techniques, heralding a new era in the observation of long-term volcanic gases.


2021 ◽  
Vol 74 (3) ◽  
pp. 273-286
Author(s):  
Maša Surić ◽  
◽  
Robert Lončarić ◽  
Matea Kulišić ◽  
Lukrecija Sršen ◽  
...  

Carbon dioxide (CO2) concentration (CDC) plays an important role in karst processes, governing both carbonate deposition and dissolution, affecting not only natural processes, but also human activities in caves adapted for tourism. Its variations due to various controlling parameters was observed from 2017 to 2021 in two Croatian show caves (Manita peć and Modrič) where we examined inter- and within-cave correlation of internal aerology regarding the sources, sinks and transport mechanism of CDC in a karst conduit setting. In both caves, the main sources of CO2 are: i) plant and microbial activity i.e. root respiration and organic matter decay within soil horizons and fractured epikarst, and ii) degassing from CO2-rich percolation water. The main sink of CO2 is dilution with outside air due to cave ventilation. Chimney-effect driven ventilation controlled by seasonal differences between surface and cave air temperatures shows winter (Tout<Tcave) and summer (Tout>Tcave ) ventilation regime, which are modulated by the geometry of cave passages, the transmissivity of the overlying epikarst, and occasionally by the external winds, especially the gusty north-eastern bora wind. In these terms, the Modrič Cave appears to be more confined and less ventilated, with a substantial CDC difference between the left (550-7200 ppm) and right (1475- >10,000 ppm) passages. The Manita peć Cave is, in contrast, ventilated almost year-round, having 7 months of CDC equilibrated with the outside atmosphere and the highest summer CDC values of ~1410 ppm. In both caves, at the current level of tourist use, anthropogenic CO2 flux is not a matter of concern for cave conservation. In turn, in the innermost part of the right Modrič Cave passage visitors’ health might be compromised, but the tourists are allowed only in the left passage. Speleothem growth rate, recognized as a useful palaeoenvironmental proxy for speleothem-based palaeoclimate studies, strongly depends on CDC variations, so the high CDCs recorded in the Modrič Cave indicate the potential periods with no speleothem deposition due to the hampered degassing of CO2 from the dripping groundwater. The opposite effect i.e. enhanced ventilation (that supports calcite precipitation) during the windy glacials/stadials, as well as substantial vegetational changes must also be taken into consideration when interpreting environmental records from spelean calcite.


2014 ◽  
Vol 11 (4) ◽  
pp. 1895-1948 ◽  
Author(s):  
L. M. Goddijn-Murphy ◽  
D. K. Woolf ◽  
P. E. Land ◽  
J. D. Shutler ◽  
C. Donlon

Abstract. Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables.


Author(s):  
Jindong Wu ◽  
Jiantao Weng ◽  
Bing Xia ◽  
Yujie Zhao ◽  
Qiuji Song

High indoor air quality is crucial for the health of human beings. The purpose of this work is to analyze the synergistic effect of particulate matter 2.5 (PM2.5) and carbon dioxide (CO2) concentration on occupant satisfaction and work productivity. This study carried out a real-scale experiments in a meeting room with exposures of up to one hour. Indoor environment parameters, including air temperature, relative humidity, illuminance, and noise level, were controlled at a reasonable level. Twenty-nine young participants were participated in the experiments. Four mental tasks were conducted to quantitatively evaluate the work productivity of occupants and a questionnaire was used to access participants’ satisfaction. The Spearman correlation analysis and two-way analysis of variance were applied. It was found that the overall performance declined by 1% for every 10 μg/m3 increase in PM2.5 concentration. Moreover, for every 10% increase in dissatisfaction with air quality, productivity performance decreased by 1.1% or more. It should be noted that a high CO2 concentration (800 ppm) has a stronger negative effect on occupant satisfaction towards air quality than PM2.5 concentration in a non-ventilated room. In order to obtain optimal occupant satisfaction and work productivity, low concentrations of PM2.5 (<50 μg/m3) and CO2 (<700 ppm) are recommended.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


2013 ◽  
Vol 13 (23) ◽  
pp. 11643-11660 ◽  
Author(s):  
A. Chatterjee ◽  
A. M. Michalak

Abstract. Data assimilation (DA) approaches, including variational and the ensemble Kalman filter methods, provide a computationally efficient framework for solving the CO2 source–sink estimation problem. Unlike DA applications for weather prediction and constituent assimilation, however, the advantages and disadvantages of DA approaches for CO2 flux estimation have not been extensively explored. In this study, we compare and assess estimates from two advanced DA approaches (an ensemble square root filter and a variational technique) using a batch inverse modeling setup as a benchmark, within the context of a simple one-dimensional advection–diffusion prototypical inverse problem that has been designed to capture the nuances of a real CO2 flux estimation problem. Experiments are designed to identify the impact of the observational density, heterogeneity, and uncertainty, as well as operational constraints (i.e., ensemble size, number of descent iterations) on the DA estimates relative to the estimates from a batch inverse modeling scheme. No dynamical model is explicitly specified for the DA approaches to keep the problem setup analogous to a typical real CO2 flux estimation problem. Results demonstrate that the performance of the DA approaches depends on a complex interplay between the measurement network and the operational constraints. Overall, the variational approach (contingent on the availability of an adjoint transport model) more reliably captures the large-scale source–sink patterns. Conversely, the ensemble square root filter provides more realistic uncertainty estimates. Selection of one approach over the other must therefore be guided by the carbon science questions being asked and the operational constraints under which the approaches are being applied.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


Sign in / Sign up

Export Citation Format

Share Document