scholarly journals Measurements of CO<sub>2</sub> exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

2014 ◽  
Vol 11 (2) ◽  
pp. 347-363 ◽  
Author(s):  
M. Koskinen ◽  
K. Minkkinen ◽  
P. Ojanen ◽  
M. Kämäräinen ◽  
T. Laurila ◽  
...  

Abstract. We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

2013 ◽  
Vol 10 (8) ◽  
pp. 14195-14238 ◽  
Author(s):  
M. Koskinen ◽  
K. Minkkinen ◽  
P. Ojanen ◽  
M. Kämäräinen ◽  
T. Laurila ◽  
...  

Abstract. We built an automatic chamber system to measure greehouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpackin addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the nighttime respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the type of the fit (linear and polynomial), (2) the starting point of the fit after closing the chamber, (3) the length of the fit, (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u&amp;ast;). The best fitting method (the most robust, least random variation) was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If nighttime problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.


2017 ◽  
Vol 68 (9) ◽  
pp. 1585 ◽  
Author(s):  
Stephen R. Midway ◽  
Caleb T. Hasler ◽  
Tyler Wagner ◽  
Cory D. Suski

Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2 (pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96P. promelas were consumed (n=96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.


Author(s):  
Jindong Wu ◽  
Jiantao Weng ◽  
Bing Xia ◽  
Yujie Zhao ◽  
Qiuji Song

High indoor air quality is crucial for the health of human beings. The purpose of this work is to analyze the synergistic effect of particulate matter 2.5 (PM2.5) and carbon dioxide (CO2) concentration on occupant satisfaction and work productivity. This study carried out a real-scale experiments in a meeting room with exposures of up to one hour. Indoor environment parameters, including air temperature, relative humidity, illuminance, and noise level, were controlled at a reasonable level. Twenty-nine young participants were participated in the experiments. Four mental tasks were conducted to quantitatively evaluate the work productivity of occupants and a questionnaire was used to access participants’ satisfaction. The Spearman correlation analysis and two-way analysis of variance were applied. It was found that the overall performance declined by 1% for every 10 μg/m3 increase in PM2.5 concentration. Moreover, for every 10% increase in dissatisfaction with air quality, productivity performance decreased by 1.1% or more. It should be noted that a high CO2 concentration (800 ppm) has a stronger negative effect on occupant satisfaction towards air quality than PM2.5 concentration in a non-ventilated room. In order to obtain optimal occupant satisfaction and work productivity, low concentrations of PM2.5 (<50 μg/m3) and CO2 (<700 ppm) are recommended.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Christoph Schünemann ◽  
David Schiela ◽  
Regine Ortlepp

Can building performance simulation reproduce measured summertime indoor conditions of a multi-residential building in good conformity? This question is answered by calibrating simulated to monitored room temperatures of several rooms of a multi-residential building for an entire summer in two process steps. First, we did a calibration for several days without the residents being present to validate the building physics of the 3D simulation model. Second, the simulations were calibrated for the entire summer period, including the residents’ impact on evolving room temperature and overheating. As a result, a high degree of conformity between simulation and measurement could be achieved for all monitored rooms. The credibility of our results was secured by a detailed sensitivity analysis under varying meteorological conditions, shading situations, and window ventilation or room use in the simulation model. For top floor dwellings, a high overheating intensity was evoked by a combination of insufficient use of night-time window ventilation and non-heat-adapted residential behavior in combination with high solar gains and low heat storage capacities. Finally, the overall findings were merged into a process guideline to describe how a step-by-step calibration of residential building simulation models can be done. This guideline is intended to be a starting point for future discussions about the validity of the simplified boundary conditions which are often used in present-day standard overheating assessment.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

&lt;p&gt;Biomass burning including residential heating, agricultural fires, prescribed burning, and wildfires is a major source of gaseous and particulate pollutants in the atmosphere. Although, important changes in the size distributions and the chemical composition of the biomass burning aerosol during daytime chemistry have been observed, the corresponding changes at nighttime or in winter where photochemistry is slow, have received relatively little attention. In this study, we tested the hypothesis that nightime chemistry in biomass burning plumes can be rapid in urban areas using a dual smog chamber system.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Ambient urban air during winter nighttime periods with high concentrations of ambient biomass burning organic aerosol is used as the starting point. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO&lt;sub&gt;3&lt;/sub&gt; production and aging) while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20-70%. The oxygen to carbon ratio of the OA increased by 50% on average and the mass spectra of the produced OA was quite similar to that of the oxidized OA mass spectra reported during winter in urban areas. Good correlation was also observed with the produced mass spectra from nocturnal aging of laboratory biomass burning emissions showing the strong contribution of biomass burning emissions in the SOA formation during cold nights with high biomass burning activities. Concentrations of NO&lt;sub&gt;3&lt;/sub&gt; radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.2-1.2 &amp;#956;g m&lt;sup&gt;-3&lt;/sup&gt; of organic nitrate. These results strongly indicate that the OA in biomass burning plumes can evolve rapidly even during wintertime periods with low photochemical activity.&lt;/p&gt;


2011 ◽  
Vol 8 (11) ◽  
pp. 3203-3218 ◽  
Author(s):  
A. Lohila ◽  
K. Minkkinen ◽  
M. Aurela ◽  
J.-P. Tuovinen ◽  
T. Penttilä ◽  
...  

Abstract. Drainage for forestry purposes increases the depth of the oxic peat layer and leads to increased growth of shrubs and trees. Concurrently, the production and uptake of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) change: due to the accelerated decomposition of peat in the presence of oxygen, drained peatlands are generally considered to lose peat carbon (C). We measured CO2 exchange with the eddy covariance (EC) method above a drained nutrient-poor peatland forest in southern Finland for 16 months in 2004–2005. The site, classified as a dwarf-shrub pine bog, had been ditched about 35 years earlier. CH4 and N2O fluxes were measured at 2–5-week intervals with the chamber technique. Drainage had resulted in a relatively little change in the water table level, being on average 40 cm below the ground in 2005. The annual net ecosystem exchange was −870 ± 100 g CO2 m−2 yr−1 in the calendar year 2005, indicating net CO2 uptake from the atmosphere. The site was a small sink of CH4 (−0.12 g CH4 m−2 yr−1) and a small source of N2O (0.10 g N2O m−2 yr−1). Photosynthesis was detected throughout the year when the air temperature exceeded −3 °C. As the annual accumulation of C in the above and below ground tree biomass (175 ± 35 g C m−2) was significantly lower than the accumulation observed by the flux measurement (240 ± 30 g C m−2), about 65 g C m−2 yr−1 was likely to have accumulated as organic matter into the peat soil. This is a higher average accumulation rate than previously reported for natural northern peatlands, and the first time C accumulation has been shown by EC measurements to occur in a forestry-drained peatland. Our results suggest that forestry-drainage may significantly increase the CO2 uptake rate of nutrient-poor peatland ecosystems.


2021 ◽  
Vol 11 (19) ◽  
pp. 9265
Author(s):  
Yingzi Zhang ◽  
Yanze Wang ◽  
Mingqian Yang ◽  
Huatao Wang ◽  
Guofang Chen ◽  
...  

Climate change has been unprecedented in the past decades or even thousands of years, which has had an adverse impact on the mechanical properties of concrete structures. Many researchers have begun to study new concrete materials. Graphene nanoplatelet (GNP) is an attractive nanomaterial that can change the crystal structure of concrete and improve durability. The aim of the present study was to investigate the effect of GNP (0.05%wt) on the carbonation depth of concrete under simulated changing climate conditions (varying temperature, relative humidity, and carbon dioxide (CO2) concentration), and compare it with ordinary concrete. When the concentration of CO2 is variable, the carbonation depth of graphene concrete is 10% to 20% lower than that of ordinary concrete. When the temperature is lower than 33 °C, the carbonation depth of graphene concrete is less than that of the control sample; however, above 33 °C, the thermal conductivity of GNP increases the carbonation reaction rate of concrete. When the humidity is a variable, the carbonation depth of graphene concrete is less than 15% to 30% of ordinary concrete, and when the humidity is higher than 78%, the difference in the carbonation depth between the ordinary concrete and the graphene concrete decreases gradually. The overall results indicated that GNP has a favorable effect on anti-carbonation performance under changing climate conditions.


2020 ◽  
Vol 12 (15) ◽  
pp. 2498
Author(s):  
Farhan Mustafa ◽  
Lingbing Bu ◽  
Qin Wang ◽  
Md. Arfan Ali ◽  
Muhammad Bilal ◽  
...  

Accurate knowledge of the carbon budget on global and regional scales is critically important to design mitigation strategies aimed at stabilizing the atmospheric carbon dioxide (CO2) emissions. For a better understanding of CO2 variation trends over Asia, in this study, the column-averaged CO2 dry air mole fraction (XCO2) derived from the National Oceanic and Atmospheric Administration (NOAA) CarbonTracker (CT) was compared with that of Greenhouse Gases Observing Satellite (GOSAT) from September 2009 to August 2019 and with Orbiting Carbon Observatory 2 (OCO-2) from September 2014 until August 2019. Moreover, monthly averaged time-series and seasonal climatology comparisons were also performed separately over the five regions of Asia; i.e., Central Asia, East Asia, South Asia, Southeast Asia, and Western Asia. The results show that XCO2 from GOSAT is higher than the XCO2 simulated by CT by an amount of 0.61 ppm, whereas, OCO-2 XCO2 is lower than CT by 0.31 ppm on average, over Asia. The mean spatial correlations of 0.93 and 0.89 and average Root Mean Square Deviations (RMSDs) of 2.61 and 2.16 ppm were found between the CT and GOSAT, and CT and OCO-2, respectively, implying the existence of a good agreement between the CT and the other two satellites datasets. The spatial distribution of the datasets shows that the larger uncertainties exist over the southwest part of China. Over Asia, NOAA CT shows a good agreement with GOSAT and OCO-2 in terms of spatial distribution, monthly averaged time series, and seasonal climatology with small biases. These results suggest that CO2 can be used from either of the datasets to understand its role in the carbon budget, climate change, and air quality at regional to global scales.


Sign in / Sign up

Export Citation Format

Share Document