Soil CO2 flux affected by Aporrectodea caliginosa earthworms

2010 ◽  
Vol 5 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Miloslav Šimek ◽  
Václav Pižl

AbstractThe effects of Aporrectodea caliginosa earthworms on both carbon dioxide (CO2) accumulation in and emissions from soil, as well as the simultaneous impact of earthworms on soil microbiological properties were investigated in a microcosm experiment carried out over 5.5 months. Concentration of CO2 in soil air was greater at a depth of 15 cm when compared with a depth of 5 cm, but varied during the season both in control and earthworm-inhabited chambers. Peaks of CO2 concentrations at both depths occurred in both treatments during August, approximately 80 days after the experiment started. Generally, the presence of earthworms increased the CO2 concentration at 15-cm depth. Larger CO2 emissions were consistently recorded in conjunction with higher amounts of CO2 in soil air when chambers were inhabited by earthworms. The total CO2 emissions during the experimental period covering 161 days were estimated at 118 g CO2-C m−2 and 99 g CO2-C m−2 from chambers with and without earthworms respectively. Moreover, the presence of earthworms increased microbial biomass in the centre and at the bottom of chambers, and enhanced both dehydrogenase activity and nitrifying enzyme activity in the soils. We suggest that the effect of earthworms on both the enhanced soil accumulation of CO2 as well as emissions of CO2 was mostly indirect, due to the impacts of earthworms on soil microbial community.

2018 ◽  
Author(s):  
Elodie Alice Courtois ◽  
Clément Stahl ◽  
Benoit Burban ◽  
Joke Van den Berge ◽  
Daniel Berveiller ◽  
...  

Abstract. Measuring in situ soil fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO2 flux chamber system (LI-8100A) with a CH4 and N2O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure time of 2 minutes was sufficient for a reliable estimation of CO2 and CH4 fluxes (100 % and 98.5 % of fluxes were above Minimum Detectable Flux – MDF, respectively). This closure time was generally not suitable for a reliable estimation of the low N2O fluxes in this ecosystem but was sufficient for detecting rare major peak events. A closure time of 25 minutes was more appropriate for reliable estimation of most N2O fluxes (85.6 % of measured fluxes are above MDF ± 0.002 nmol m−2 s−1). Our study highlights the importance of adjusted closure time for each gas.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6009
Author(s):  
YoungSeok Hwang ◽  
Jung-Sup Um ◽  
JunHwa Hwang ◽  
Stephan Schlüter

The Kaya identity is a powerful index displaying the influence of individual carbon dioxide (CO2) sources on CO2 emissions. The sources are disaggregated into representative factors such as population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon footprint of energy. However, the Kaya identity has limitations as it is merely an accounting equation and does not allow for an examination of the hidden causalities among the factors. Analyzing the causal relationships between the individual Kaya identity factors and their respective subcomponents is necessary to identify the real and relevant drivers of CO2 emissions. In this study we evaluated these causal relationships by conducting a parallel multiple mediation analysis, whereby we used the fossil fuel CO2 flux based on the Open-Source Data Inventory of Anthropogenic CO2 emissions (ODIAC). We found out that the indirect effects from the decomposed variables on the CO2 flux are significant. However, the Kaya identity factors show neither strong nor even significant mediating effects. This demonstrates that the influence individual Kaya identity factors have on CO2 directly emitted to the atmosphere is not primarily due to changes in their input factors, namely the decomposed variables.


ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12136-12145 ◽  
Author(s):  
Yongjun Wang ◽  
Xiaoming Zhang ◽  
Hemeng Zhang ◽  
Kyuro Sasaki

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 808 ◽  
Author(s):  
Dandan Li ◽  
Qing Liu ◽  
Huajun Yin ◽  
Yiqi Luo ◽  
Dafeng Hui

Emissions of greenhouse gases (GHG) such as CO2 and N2O from soils are affected by many factors such as climate change, soil carbon content, and soil nutrient conditions. However, the response patterns and controls of soil CO2 and N2O fluxes to global warming and nitrogen (N) fertilization are still not clear in subalpine forests. To address this issue, we conducted an eight-year field experiment with warming and N fertilization treatments in a subalpine coniferous spruce (Picea asperata Mast.) plantation forest in China. Soil CO2 and N2O fluxes were measured using a static chamber method, and soils were sampled to analyze soil carbon and N contents, soil microbial substrate utilization (MSU) patterns, and microbial functional diversity. Results showed that the mean annual CO2 and N2O fluxes were 36.04 ± 3.77 mg C m−2 h−1 and 0.51 ± 0.11 µg N m−2 h−1, respectively. Soil CO2 flux was only affected by warming while soil N2O flux was significantly enhanced by N fertilization and its interaction with warming. Warming enhanced dissolve organic carbon (DOC) and MSU, reduced soil organic carbon (SOC) and microbial biomass carbon (MBC), and constrained the microbial metabolic activity and microbial functional diversity, resulting in a decrease in soil CO2 emission. The analysis of structural equation model indicated that MSU had dominant direct negative effect on soil CO2 flux but had direct positive effect on soil N2O flux. DOC and MBC had indirect positive effects on soil CO2 flux while soil NH4+-N had direct negative effect on soil CO2 and N2O fluxes. This study revealed different response patterns and controlling factors of soil CO2 and N2O fluxes in the subalpine plantation forest, and highlighted the importance of soil microbial contributions to GHG fluxes under climate warming and N deposition.


2017 ◽  
Vol 9 (2) ◽  
pp. 127-130
Author(s):  
MA Islam ◽  
M Mano ◽  
MS Hossen ◽  
A Miyata ◽  
MA Baten

An experiment was conducted to measure carbon dioxide (CO2) flux by using the eddy covariance technique over rice paddy field at Mymensingh flux study site at Bangladesh Agricultural University, Mymensingh at three growing stage in Aman season in 2015. The variation of CO2 flux in the experimental period displayed distinct diurnal variations as influenced by rice growth and development. The diurnal pattern of CO2 flux showed broad peak at flowering stage of Aman rice at DOY 285 due to photosynthesis. The diurnal pattern of CO2 flux showed also higher broad peak at 1500 hour in DOY 272 at vegetative stage and lower broad peak at 1300 hour in DOY 330 ripening stage of Aman rice due to photosynthesis, meteorological conditions and field management activities.J. Environ. Sci. & Natural Resources, 9(2): 127-130 2016


2013 ◽  
Vol 10 (8) ◽  
pp. 14195-14238 ◽  
Author(s):  
M. Koskinen ◽  
K. Minkkinen ◽  
P. Ojanen ◽  
M. Kämäräinen ◽  
T. Laurila ◽  
...  

Abstract. We built an automatic chamber system to measure greehouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpackin addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the nighttime respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the type of the fit (linear and polynomial), (2) the starting point of the fit after closing the chamber, (3) the length of the fit, (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If nighttime problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.


Soil Research ◽  
2010 ◽  
Vol 48 (5) ◽  
pp. 385 ◽  
Author(s):  
Sally Price ◽  
David Whitehead ◽  
Robert Sherlock ◽  
Tony McSeveny ◽  
Graeme Rogers

Monthly measurements of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes were made at 3 sites along a sequence of naturally regenerating Kunzea ericoides shrubland in New Zealand, consisting of unimproved pasture (UP), young (8–12 years) Kunzea trees (YK), and old (80 years) Kunzea trees (OK). The CO2 flux at a base temperature of 10°C was highest at the OK site (0.51 g CO2/m2.h) and lowest at the UP site (0.26 g CO2/m2.h). Values of CO2 flux were regulated by soil temperature (Ts) throughout the year, and water availability modified the response to Ts when root-zone water content, (θ), fell below 0.27–0.29 m3/m3 in spring and summer. The soils were mostly CH4 sinks, although there were net CH4 emissions during wet periods at the YK site. The maximum CH4 flux at the YK site was –49.7 μg CH4/m2.h compared with –33.4 μg CH4/m2.h for the UP (and –90.4 μg CH4/m2.h for OK), indicating the potential for rapid recovery of methanotrophic populations in the YK shrubland over 8–12 years. However, on an annual basis our data suggest that CH4 oxidation rates decrease as land reverts from unimproved pasture to shrubland. Methane oxidation rates were strongly dependent on θ and only weakly dependent on Ts. Measurements of N2O fluxes were below the minimum detectable limit throughout the year at the UP and YK sites, and low but dependent on both Ts and θ at the OK site. Annual estimates of soil CO2 flux were 39.9, 23.3, and 21.9 × 103 kg CO2/ha.year at the OK, YK, and UP sites, respectively. All 3 sites were a net sink for CH4, with the highest oxidation rate of –5.1 kg CH4/ha.year at the OK site compared with –1.52 kg CH4/ha.year at the UP site. On a CO2-equivalent basis, the OK site was a greater CH4 sink (–127.3 kg CO2-e/ha.year) than a N2O source (77.5 kg CO2-e/ha.year), demonstrating the potential for soils to oxidise CH4 with forest succession as a possible mitigation strategy for land managers to reduce net emissions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6402
Author(s):  
Stefano Parracino ◽  
Simone Santoro ◽  
Luca Fiorani ◽  
Marcello Nuvoli ◽  
Giovanni Maio ◽  
...  

Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically challenging, but we can retrieve useful information from magmatic/geological process studies for the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements, which is unsafe for operators and deleterious for equipment. In order to overcome these limitations, a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been developed as part of the ERC (European Research Council) Project “BRIDGE”, for sensitive, remote, and safe real-time CO2 observations. Here, we report on data collection, processing techniques, and the most significant findings of the experimental campaigns carried out at the most hazardous volcanic areas in Italy: Pozzuoli Solfatara (Phlegraen Fields), Stromboli, and Mt. Etna. The BrIdge voLcanic LIdar—BILLI has successfully obtained accurate measurements of in-plume CO2 concentration and flux. In addition, wind velocity has also been retrieved. It has been shown that the measurements of CO2 concentration performed by BILLI are comparable to those carried out by volcanologists with other standard techniques, heralding a new era in the observation of long-term volcanic gases.


2021 ◽  
Vol 74 (3) ◽  
pp. 273-286
Author(s):  
Maša Surić ◽  
◽  
Robert Lončarić ◽  
Matea Kulišić ◽  
Lukrecija Sršen ◽  
...  

Carbon dioxide (CO2) concentration (CDC) plays an important role in karst processes, governing both carbonate deposition and dissolution, affecting not only natural processes, but also human activities in caves adapted for tourism. Its variations due to various controlling parameters was observed from 2017 to 2021 in two Croatian show caves (Manita peć and Modrič) where we examined inter- and within-cave correlation of internal aerology regarding the sources, sinks and transport mechanism of CDC in a karst conduit setting. In both caves, the main sources of CO2 are: i) plant and microbial activity i.e. root respiration and organic matter decay within soil horizons and fractured epikarst, and ii) degassing from CO2-rich percolation water. The main sink of CO2 is dilution with outside air due to cave ventilation. Chimney-effect driven ventilation controlled by seasonal differences between surface and cave air temperatures shows winter (Tout<Tcave) and summer (Tout>Tcave ) ventilation regime, which are modulated by the geometry of cave passages, the transmissivity of the overlying epikarst, and occasionally by the external winds, especially the gusty north-eastern bora wind. In these terms, the Modrič Cave appears to be more confined and less ventilated, with a substantial CDC difference between the left (550-7200 ppm) and right (1475- >10,000 ppm) passages. The Manita peć Cave is, in contrast, ventilated almost year-round, having 7 months of CDC equilibrated with the outside atmosphere and the highest summer CDC values of ~1410 ppm. In both caves, at the current level of tourist use, anthropogenic CO2 flux is not a matter of concern for cave conservation. In turn, in the innermost part of the right Modrič Cave passage visitors’ health might be compromised, but the tourists are allowed only in the left passage. Speleothem growth rate, recognized as a useful palaeoenvironmental proxy for speleothem-based palaeoclimate studies, strongly depends on CDC variations, so the high CDCs recorded in the Modrič Cave indicate the potential periods with no speleothem deposition due to the hampered degassing of CO2 from the dripping groundwater. The opposite effect i.e. enhanced ventilation (that supports calcite precipitation) during the windy glacials/stadials, as well as substantial vegetational changes must also be taken into consideration when interpreting environmental records from spelean calcite.


Sign in / Sign up

Export Citation Format

Share Document