scholarly journals Tree water relations trigger monoterpene emissions from Scots pine stem during spring recovery

2015 ◽  
Vol 12 (10) ◽  
pp. 7783-7814 ◽  
Author(s):  
A. Vanhatalo ◽  
T. Chan ◽  
J. Aalto ◽  
J. F. Korhonen ◽  
P. Kolari ◽  
...  

Abstract. Tree canopies are known to emit large amounts of VOCs (volatile organic compounds) such as monoterpenes to the surrounding air. The main source for these is considered to be the green biomass, i.e. foliage, but emissions from the woody compartments have not been quantified. A VOC emission anomaly has been observed during transition from winter to summer activity. We analyzed if non-foliar components could partially explain the anomaly. We measured the VOC emissions from Scots pine (Pinus sylvestris L.) stems and shoots during the dehardening phase of trees in field conditions in two consecutive springs. We observed a large, transient monoterpene burst from stems, while the shoot monoterpene emissions and transpiration remained low. The burst lasted about 12 h. Simultaneously, an unusual night-time sap flow and an anomalous diurnal pattern of tree diameter were detected. Hence, we suggest that the monoterpene burst was a consequence of the recovery of the stem from winter-time. This indicates that the dominant processes and environmental drivers triggering the monoterpene emissions are different between stems and foliage.

2015 ◽  
Vol 12 (18) ◽  
pp. 5353-5363 ◽  
Author(s):  
A. Vanhatalo ◽  
T. Chan ◽  
J. Aalto ◽  
J. F. Korhonen ◽  
P. Kolari ◽  
...  

Abstract. Tree canopies are known to emit large amounts of VOCs (volatile organic compounds) such as monoterpenes into the surrounding air. High VOC emission rates from boreal forests have been observed during the transition from winter to summer activity. The most important sources of these are considered to be the green foliage, understory vegetation and soil organisms, but emissions from the living stand woody compartments have so far not been quantified. We analyzed whether the non-foliar components could partially explain the springtime high emission rates. We measured the monoterpene emissions from Scots pine (Pinus sylvestris L.) stem and shoots during the dehardening phase of trees in field conditions in two consecutive springs. We observed a large, transient monoterpene burst from the stem, while the shoot monoterpene emissions remained low. The burst lasted about 12 h. Simultaneously, an unusual nighttime sap flow and a non-systematic diurnal pattern of tree diameter were detected. Hence, we suggest that the monoterpene burst was a consequence of the recovery of the stem from wintertime, and likely related to the refilling of embolized tracheids and/or phenological changes in the living cells of the stem. This indicates that the dominant processes and environmental drivers triggering the monoterpene emissions are different between the stem and the foliage.


2010 ◽  
Vol 44 (30) ◽  
pp. 3651-3659 ◽  
Author(s):  
Jaana Bäck ◽  
Hermanni Aaltonen ◽  
Heidi Hellén ◽  
Maija K. Kajos ◽  
Johanna Patokoski ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Magdalena Czajka ◽  
Beata Fabisiak ◽  
Ewa Fabisiak

The qualitative and quantitative composition of volatile organic compounds (VOC) emitted from furnishings from solid wood and all kinds of wood derivative materials depends on many factors, of which the most important is the wood species. The intraspecies and interspecies differences in VOC emission result from the differences in the chemical composition and anatomical structure of heartwood and sapwood of different species. VOC composition analysis was performed separately for heartwood and sapwood of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and European larch (Larix decidua Mill.) trees. The studies were conducted in a glass climatic chamber of 0.025 m3, equipped with a system for the monitoring and control of climatic conditions. Samples of air for analyses were collected after 3, 7, 14 and 28 days of exposure. The results provided evidence for interspecies and intraspecies differences in the qualitative and quantitative compositions of VOC. The concentration of total VOC (TVOC) released from heartwood of Scots pine was higher than that released from sapwood. For European larch and Norway spruce, the opposite relations were observed. The VOC emission from Scots pine heartwood was about 17 times higher than the emission from European larch and Norway spruce heartwood. The differences in TVOC emitted from the sapwood of samples from different species were smaller. For each of the species, the highest percentage contribution to TVOC was made by terpenes. The second highest percentage contribution in TVOC was made by compounds containing a carbonyl group, mainly aldehydes, while aromatic compounds made the third highest contribution.


1971 ◽  
Vol 49 (8) ◽  
pp. 1425-1431 ◽  
Author(s):  
Sagar Krupa ◽  
Nils Fries

The mycorrhizal fungus Boletus variegatus Fr. was grown in pure culture and its production of volatile organic compounds studied. Maximal production of volatile organic compounds was associated with actively growing mycelia. The major volatile compounds identified in the culture filtrate were ethanol, isobutanol, isoamyl alcohol, acetoin, and isobutyric acid. Of these, isobutanol and isobutyric acid are known to possess fungistatic activity. Volatile organic compounds were also extracted from the whole root systems of Pinus sylvestris L. (Scots pine) seedlings grown in pure culture with and without the fungal symbiont. Infection of the roots by the fungus resulted in production and (or) accumulation of volatile compounds in concentrations two to eight times greater than that of non-inoculated controls. These compounds were identified by combined gas chromatography and mass spectrometry. They were primarily terpenes and sesquiterpenes. Volatile compounds produced by the mycorrhizal root system of Scots pine collected from a nursery were essentially the same as those obtained from the plants grown in pure culture. Many of these are known to be fungistatic compounds. A hypothesis has been proposed to explain a possible role of the host plant in disease resistance of mycorrhizal root systems to root pathogens and in the development of the symbiotic state.


2016 ◽  
Author(s):  
Kerneels Jaars ◽  
Pieter G. van Zyl ◽  
Johan P. Beukes ◽  
Heidi Hellén ◽  
Ville Vakkari ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are important role players in the chemistry of the troposphere, especially in the formation of tropospheric ozone (O3) and secondary organic aerosols (SOA). Ecosystems produce and emit a large number of BVOCs. It is estimated on a global scale that approximately 90 % of annual VOC emissions are BVOCs. In this study, measurements of BVOCs were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site situated in savannah grassland. Very few BVOC measurements exist for grassland savannah and results presented in this study are the most extensive for this type of landscape. Samples were collected twice a week for two hours during daytime and two hours during night-time through two long-term sampling campaigns from February 2011 to February 2012 and from December 2013 to February 2015. Individual BVOCs were identified and quantified using a thermal desorption instrument, connected to a gas chromatograph and a mass selective detector. The annual median concentrations of isoprene, 2-methyl-3-butene-2-ol (MBO), monoterpenes and sesquiterpenes (SQT) during the first campaign were 14, 7, 120 and 8 pptv, respectively, and 14, 4, 83 and 4 pptv, respectively, during the second campaign. The sum of the concentrations of the monoterpenes were at least an order of magnitude higher than the concentrations of other BVOC species during both sampling campaigns, with α-pinene being the most abundant species. The highest BVOC concentrations were observed during the wet season and elevated soil moisture was associated with increased BVOC concentrations. However, comparisons with measurements conducted at other landscapes in southern Africa and the rest of the world that have more woody vegetation indicated that BVOC concentrations were, in general, significantly lower. Furthermore, BVOC concentrations were an order of magnitude lower compared to total aromatic concentrations measured at Welgegund. An analysis of concentrations by wind direction indicated that isoprene concentrations were higher from the western direction, while wind direction did not indicate any significant differences in the concentrations of the other BVOC species. Statistical analysis indicated that soil moisture had the most significant impact on atmospheric levels of MBO, monoterpenes and SQT concentrations, while temperature had the greatest influence on isoprene levels. The combined O3 formation potentials of all the BVOCs measured calculated with MIR coefficients during the first and second campaign were 1162 and 1022 pptv, respectively. α-Pinene and limonene had the highest reaction rates with O3, while isoprene exhibited relatively small contributions to O3 depletion. Limonene, α-pinene and terpinolene had the largest contributions to the OH-reactivity of BVOCs measured at Welgegund for all of the months during both sampling campaigns.


2019 ◽  
Vol 19 (15) ◽  
pp. 10391-10403 ◽  
Author(s):  
Jonathan Liebmann ◽  
Nicolas Sobanski ◽  
Jan Schuladen ◽  
Einar Karu ◽  
Heidi Hellén ◽  
...  

Abstract. The formation of alkyl nitrates in various oxidation processes taking place throughout the diel cycle can represent an important sink of reactive nitrogen and mechanism for chain termination in atmospheric photo-oxidation cycles. The low-volatility alkyl nitrates (ANs) formed from biogenic volatile organic compounds (BVOCs), especially terpenoids, enhance rates of production and growth of secondary organic aerosol. Measurements of the NO3 reactivity and the mixing ratio of total alkyl nitrates (ΣANs) in the Finnish boreal forest enabled assessment of the relative importance of NO3-, O3- and OH-initiated formation of alkyl nitrates from BVOCs in this environment. The high reactivity of the forest air towards NO3 resulted in reactions of the nitrate radical, with terpenes contributing substantially to formation of ANs not only during the night but also during daytime. Overall, night-time reactions of NO3 accounted for 49 % of the local production rate of ANs, with contributions of 21 %, 18 % and 12 % for NO3, OH and O3 during the day. The lifetimes of the gas-phase ANs formed in this environment were on the order of 2 h due to efficient uptake to aerosol (and dry deposition), resulting in the transfer of reactive nitrogen from anthropogenic sources to the forest ecosystem.


Holzforschung ◽  
2004 ◽  
Vol 58 (6) ◽  
pp. 660-665 ◽  
Author(s):  
Peter Bengtsson ◽  
Mehri Sanati

Abstract The subject of study is the emission of Volatile Organic Compounds (VOC) during the drying of wood. Heartwood and sapwood from Scots pine were dried at different temperatures (50, 70 and 90°C) in a laboratory kiln. The sampling method, Solid Phase Microextraction was used to collect the different volatile organic compounds during the drying. The gas chromatograph and mass spectrometer was used to identify and quantify the organic matter. The total hydrocarbons were measured with a flame ionization detector. Primarily, different monoterpenes were released during the drying process. 3-carene and α-pinene were most common and were also analytically quantified. The diterpene, pimaral, was found in an estimated large amount in the later stage of the drying process but was not exactly quantified. Large differences in both release behavior and total amount of released hydrocarbon between heart- and sapwood were obtained. Emissions of VOC from heartwood were of a magnitude approximately three times higher than that from sapwood.


Sign in / Sign up

Export Citation Format

Share Document