scholarly journals Modeling nitrogen loading in a small watershed in Southwest China using a DNDC model with hydrological enhancements

2011 ◽  
Vol 8 (4) ◽  
pp. 6383-6413 ◽  
Author(s):  
J. Deng ◽  
Z. Zhou ◽  
B. Zhu ◽  
X. Zheng ◽  
C. Li ◽  
...  

Abstract. The degradation of water quality has been observed worldwide, and inputs of nitrogen (N), along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service) curve function and the MUSLE (Modified Universal Soil Loss), into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr−1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr−1) from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen). Ammonia volatilization (1299 kg N yr−1) dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.

2011 ◽  
Vol 8 (10) ◽  
pp. 2999-3009 ◽  
Author(s):  
J. Deng ◽  
Z. Zhou ◽  
B. Zhu ◽  
X. Zheng ◽  
C. Li ◽  
...  

Abstract. The degradation of water quality has been observed worldwide, and inputs of nitrogen (N), along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service) curve function and the MUSLE (Modified Universal Soil Loss), into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr−1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr−1) from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen). Ammonia volatilization (1299 kg N yr−1) dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.


2009 ◽  
Vol 61 (4) ◽  
pp. 741-749 ◽  
Author(s):  
Denggao Fu ◽  
Changqun Duan ◽  
Xiul Hou ◽  
Tiyuan Xia ◽  
Kai Gao

Human-induced changes in land use lead to major changes in plant community composition and structure which have strong effects on eco-hydrological processes and functions. We here tested the hypothesis that changes in traits of living plants have resulted in changes in structural attributes of the community that influenced eco-hydrological functions by altering eco-hydrological processes. This was done in the context of a subtropical secondary forest suc?cession following land abandonment in Central Yunnan (Southwest China). During the succession, species with high specific leaf area (SLA), high leaf nitrogen concentration (LNC), high specific root length (SRL), and low leaf dry matter content (LDMC) were progressively replaced by species with the opposite characteristics. The obtained results of correlation analyses were as follows: (1) Correlations were significant between community-aggregated SLA, LNC, and the leaf area index (LAI). Significant correlations were detected between LAI, canopy interception and stemflow, and surface runoff and soil erosion. (2) Significant correlations were also found between community-aggregated SLA, LNC, LDMC, and accumulated litter biomass. High accumulated litter biomass strongly increases the maximum water-retaining capac?ity of litter. However, significant correlations were not found between the maximum water-retaining capacity of litter and surface runoff and soil erosion. (3) Correlations were significant between community-aggregated SLA, LNC, and fine root biomass. Fine root biomass was not significantly related to the maximum water-retaining capacity of the soil, but was significantly related to surface runoff and soil erosion. These results suggest that canopy characteristics play a more important role in control of runoff and soil erosion at the studied site. It follows that plant functional traits are closely linked with canopy characteristics, which should be used as a standard for selecting species in restoration and revegetation for water and soil conservation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Ren ◽  
Jinbo Zhang ◽  
Hamidou Bah ◽  
Christoph Müller ◽  
Zucong Cai ◽  
...  

AbstractSoil gross nitrogen (N) transformations could be influenced by land use change, however, the differences in inherent N transformations between different land use soils are still not well understood under subtropical conditions. In this study, an 15N tracing experiment was applied to determine the influence of land uses on gross N transformations in Regosols, widely distributed soils in Southwest China. Soil samples were taken from the dominant land use types of forestland and cropland. In the cropland soils, the gross autotrophic nitrification rates (mean 14.54 ± 1.66 mg N kg−1 day−1) were significantly higher, while the gross NH4+ immobilization rates (mean 0.34 ± 0.10 mg N kg−1 day−1) were significantly lower than those in the forestland soils (mean 1.99 ± 0.56 and 6.67 ± 0.74 mg N kg−1 day−1, respectively). The gross NO3− immobilization and dissimilatory NO3− reduction to NH4+ (DNRA) rates were not significantly different between the forestland and cropland soils. In comparison to the forestland soils (mean 0.51 ± 0.24), the cropland soils had significantly lower NO3− retention capacities (mean 0.01 ± 0.01), indicating that the potential N losses in the cropland soils were higher. The correlation analysis demonstrated that soil gross autotrophic nitrification rate was negatively and gross NH4+ immobilization rate was positively related to the SOC content and C/N ratio. Therefore, effective measures should be taken to increase soil SOC content and C/N ratio to enhance soil N immobilization ability and NO3− retention capacity and thus reduce NO3− losses from the Regosols.


2014 ◽  
Vol 69 (9) ◽  
pp. 1805-1812 ◽  
Author(s):  
Jian Zhou ◽  
Guangxu Qin ◽  
Jianbing Zhang ◽  
Yancheng Li ◽  
Qiang He ◽  
...  

The coping strategy of a CANON (completely autotrophic nitrogen removal over nitrite) reactor working at room temperature was investigated using response surface methodology. The total nitrogen (TN) removal efficiency was taken as a dependent variable. The temperature (X), dissolved oxygen (DO) concentration (Y), and influent nitrogen loading rate (Z) were taken as independent variables. Results showed that the relation of these three independent variables can be described by the TN removal efficiency expressed as −5.03 + 1.51X + 45.16Y + 30.13Z + 0.26XY + 1.84XZ − 0.04X2 − 9.06Y2 − 99.00Z2. The analysis of variance proved that the equation is applicable. The response surface demonstrated that the temperature significantly interacts with the DO concentration and influent N loading rate. A coping strategy for the CANON reactor working at room temperature is thus proposed: altering the DO concentration and the N loading rate to counterbalance the impact of low temperature. The verification test proved the strategy is viable. The TN removal efficiency was 91.3% when the reactor was operated under a temperature of 35.0 °C, a DO of 3.0 mg/L, and a N loading rate of 0.70 kgN/(m³ d). When the temperature dropped from 35.0 to 19.2 °C, the TN removal efficiency was kept at 88.7% by regulating the influent N loading rate from 0.7 kgN/(m³ d) to 0.35 kgN/(m³ d) and the DO concentration from 3.0 to 2.6 mg/L.


2016 ◽  
Vol 41 (8) ◽  
pp. 1018-1026 ◽  
Author(s):  
Arnold Thompson ◽  
Jerry D. Davis ◽  
Andrew J. Oliphant
Keyword(s):  

CATENA ◽  
2018 ◽  
Vol 166 ◽  
pp. 147-157 ◽  
Author(s):  
Torsten Starkloff ◽  
Jannes Stolte ◽  
Rudi Hessel ◽  
Coen Ritsema ◽  
Victor Jetten

2016 ◽  
Author(s):  
Ammar Rafiei Emam ◽  
Martin Kappas ◽  
Linh Hoang Khanh Nguyen ◽  
Tsolmon Renchin

Abstract. Hydrological modeling of ungauged basins which have a high risk of natural hazards (e.g., flooding, droughts) is always imperative for policymakers and stakeholders. The Aluoi district in Hue province is a representative case study in Central Vietnam, as it is under extreme pressure of natural and anthropogenic factors. Flooding, soil erosion and sedimentation are the main hazards in this area, which threaten socio-economic activities not only in this district but also those of the area downstream. To evaluate the water resources and risk of natural hazards, we used Soil and Water Assessment Tools (SWAT) to set up a hydrological model in the ungauged basin of Aluoi district. A regionalization approach was used to predict the river discharge at the outlet of the basin. The model was calibrated in three time scales: daily, monthly and yearly by river discharge, actual evapotranspiration (ETa) and crop yield, respectively. The model was calibrated with Nash-Sutcliff and an R2 coefficients greater than 0.7, in daily and monthly scales, respectively. In the yearly scale, the crop yield inside the model was calibrated and validated with RMSE less than 2.4 ton/ha, which showed the high performance of the model. The water resource components were mapped temporally and spatially. The outcomes showed that the highest mean monthly surface runoff, 700 to 765 mm, between September and November, resulted in extreme soil erosion and sedimentation. The monthly average of actual evapotranspiration was the highest in May and lowest in December. Furthermore, installing "Best Management Practice" (BMPs) reduced surface runoff and soil erosion in agricultural lands. However, using event-based hydrological and hydraulically models in the prediction and simulation of flooding events is recommended in further studies.


Author(s):  
R.M. Monaghan ◽  
R.J. Paton ◽  
L.C. Smith ◽  
C. Binet

In response to local concerns about the expanding Southland dairy herd, a 4-year study was initiated in 1995 with the primary objective of quantifying nitrate-N losses to waterways from intensively grazed cattle pastures. Treatments were annual N fertiliser inputs of 0, 100, 200 or 400 kg N/ha. Stocking rate was set according to the pasture production on each of these four treatments, and over the 4 years of study ranged between the equivalent of 2.0 cows/ha for the 0N treatment, to 3.0 cows/ha for the treatment receiving 400 kg N/ ha/year. Mean annual losses of nitrate-N in drainage were 30, 34, 46 and 56 kg N/ha for the 0, 100, 200 and 400 kg N/ha/year treatments, respectively. Corresponding mean nitrate-N concentrations in drainage waters were 8.3, 9.2, 12.5 and 15.4 mg/ l, respectively. Very little direct leaching of fertiliser N was observed, even for drainage events in early spring, shortly after urea fertiliser application. The increased nitrate-N losses at higher rates of N fertiliser addition were instead owing to the indirect effect of increasing returns of urine and dung N to pasture. In Years 2 and 3, leaching losses of Ca, Mg, K, Na and sulphate-S averaged 61, 9, 11, 28 and 17 kg/ha/year, respectively, in the 0N fertiliser treatment. Increasing fertiliser N inputs significantly increased calcium and, to a lesser extent, potassium leaching losses but had no effect on losses of other plant nutrients. Surface runoff losses of Total-P, nitrate-N and ammonium- N were less than 0.5 kg/ha/year. For this well-drained Fleming soil, surface runoff was a relatively minor contributor of N to surface water, even for plots receiving high rates of fertiliser N and at a stocking rate of 3.0 cows/ha. Extrapolating these results to a 'typical' dairy pasture in Eastern Southland would suggest that the safe upper limit for annual fertiliser N additions to this site to achieve nitrate in drainage water below the drinking water standard is approximately 170 kg N/ha. Although losses of Ca in drainage were large, returns of this nutrient in maintenance applications of superphosphate-based products and lime should ensure Ca deficiencies are avoided in Southland dairy pastures. Keywords: cation-anion balances, dairy, N fertiliser, nitrate leaching, surface runoff, Southland


Sign in / Sign up

Export Citation Format

Share Document