scholarly journals Nutrient losses in drainage and surface runoff from a cattle-grazed pasture in Southland

Author(s):  
R.M. Monaghan ◽  
R.J. Paton ◽  
L.C. Smith ◽  
C. Binet

In response to local concerns about the expanding Southland dairy herd, a 4-year study was initiated in 1995 with the primary objective of quantifying nitrate-N losses to waterways from intensively grazed cattle pastures. Treatments were annual N fertiliser inputs of 0, 100, 200 or 400 kg N/ha. Stocking rate was set according to the pasture production on each of these four treatments, and over the 4 years of study ranged between the equivalent of 2.0 cows/ha for the 0N treatment, to 3.0 cows/ha for the treatment receiving 400 kg N/ ha/year. Mean annual losses of nitrate-N in drainage were 30, 34, 46 and 56 kg N/ha for the 0, 100, 200 and 400 kg N/ha/year treatments, respectively. Corresponding mean nitrate-N concentrations in drainage waters were 8.3, 9.2, 12.5 and 15.4 mg/ l, respectively. Very little direct leaching of fertiliser N was observed, even for drainage events in early spring, shortly after urea fertiliser application. The increased nitrate-N losses at higher rates of N fertiliser addition were instead owing to the indirect effect of increasing returns of urine and dung N to pasture. In Years 2 and 3, leaching losses of Ca, Mg, K, Na and sulphate-S averaged 61, 9, 11, 28 and 17 kg/ha/year, respectively, in the 0N fertiliser treatment. Increasing fertiliser N inputs significantly increased calcium and, to a lesser extent, potassium leaching losses but had no effect on losses of other plant nutrients. Surface runoff losses of Total-P, nitrate-N and ammonium- N were less than 0.5 kg/ha/year. For this well-drained Fleming soil, surface runoff was a relatively minor contributor of N to surface water, even for plots receiving high rates of fertiliser N and at a stocking rate of 3.0 cows/ha. Extrapolating these results to a 'typical' dairy pasture in Eastern Southland would suggest that the safe upper limit for annual fertiliser N additions to this site to achieve nitrate in drainage water below the drinking water standard is approximately 170 kg N/ha. Although losses of Ca in drainage were large, returns of this nutrient in maintenance applications of superphosphate-based products and lime should ensure Ca deficiencies are avoided in Southland dairy pastures. Keywords: cation-anion balances, dairy, N fertiliser, nitrate leaching, surface runoff, Southland

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. W. McDowell ◽  
Z. P. Simpson ◽  
A. G. Ausseil ◽  
Z. Etheridge ◽  
R. Law

AbstractUnderstanding the lag time between land management and impacts on riverine nitrate–nitrogen (N) loads is critical to understand when action to mitigate nitrate–N leaching losses from the soil profile may start improving water quality. These lags occur due to leaching of nitrate–N through the subsurface (soil and groundwater). Actions to mitigate nitrate–N losses have been mandated in New Zealand policy to start showing improvements in water quality within five years. We estimated annual rates of nitrate–N leaching and annual nitrate–N loads for 77 river catchments from 1990 to 2018. Lag times between these losses and riverine loads were determined for 34 catchments but could not be determined in other catchments because they exhibited little change in nitrate–N leaching losses or loads. Lag times varied from 1 to 12 years according to factors like catchment size (Strahler stream order and altitude) and slope. For eight catchments where additional isotope and modelling data were available, the mean transit time for surface water at baseflow to pass through the catchment was on average 2.1 years less than, and never greater than, the mean lag time for nitrate–N, inferring our lag time estimates were robust. The median lag time for nitrate–N across the 34 catchments was 4.5 years, meaning that nearly half of these catchments wouldn’t exhibit decreases in nitrate–N because of practice change within the five years outlined in policy.


Soil Research ◽  
2014 ◽  
Vol 52 (7) ◽  
pp. 621 ◽  
Author(s):  
Lucy L. Burkitt

This paper reviews the literature on nitrate leaching and nitrogen (N) runoff under intensive dairy pasture systems in Australia and draws comparisons with research undertaken under similar climates and farming systems internationally, with the aim to inform future research in this area. An Australian nitrate-leaching study suggests that annual nitrate-leaching loads are lower (3.7–14.5 kg N ha–1 year–1 for nil N and 6–22 kg N ha–1 year–1 for 200 kg N ha–1 applied) than the range previously measured and modelled on New Zealand dairy farms (~18–110 kg N ha–1 year–1). It is likely that nitrate-leaching rates are higher in New Zealand because of the prevalence of free-draining soils and higher average stocking rates. However, this review highlights that there are insufficient Australian nitrate-leaching data, particularly following urine application, to undertake a rigorous comparison. Median N surpluses on Australian dairy farms are higher (198 kg N ha–1) than values for an average New Zealand farm (135 kg N ha–1). Given the facts that many soils used for intensive pasture production in Australia are lightly textured or free-draining clay loams receiving average rainfall of >800 mm year–1, that herd sizes have risen in the last 10 years and that water quality is a concern in some dairy catchments, nitrate leaching could be an issue for the Australian dairy industry. Australian data on surface runoff of N are more available, despite its overall contribution to N losses being low (generally <5 kg N ha–1 year–1), except under border-check flood irrigation or hump-and-hollow surface drainage (3–23 kg N ha–1 year–1). More research is needed to quantify surface N runoff and leaching following effluent application and to examine dissolved organic forms of N loss, particularly in view of the continued intensification of the Australian dairy industry.


Author(s):  
R.W. Mcdowell ◽  
D.J. Houlbrooke

Dicyandiamide (DCD) is an effective mitigation option for decreasing nitrate-nitrogen (NO3-N) losses in drainage water from New Zealand pastures. This study determined the relative effect of DCD on decreasing NO3-N losses from simulated sheep or cattle urine patches applied to a winter forage crop. Lysimeters were collected from a site in North Otago (Mottled Fragic Pallic Timaru silt loam). Keywords: drainage, lysimeters, urine, nitrate, dicyandiamide, winter forage cropping


2019 ◽  
Vol 35 (3) ◽  
pp. 293-300 ◽  
Author(s):  
J. D. Jabro ◽  
W. M. Iversen ◽  
W. B. Stevens ◽  
U. M. Sainju ◽  
B. L. Allen

Abstract. High levels of nitrate-nitrogen (NO3-N) in the nation’s groundwater are a significant environmental concern. To date no studies have yet evaluated the effects of various tillage practices on percolated drainage and NO3-N fluxes below the rootzone of cropping systems in the northern Great Plains. A field study was conducted to examine and compare the effect of no-tillage (NT) and conventional tillage (CT) practices on seasonal drainage fluxes and NO3-N leaching losses below the rootzone in irrigated corn ( L.) and soybean ( L.) on a Lihen sandy loam soil. Sixteen passive capillary lysimeters, PCAPs (75 cm long polyvinyl chloride pipe with a collecting surface area of 0.1 m2) were placed 90 cm below the soil surface to quantify percolated drainage water below the rootzone of corn-soybean rotation under NT and CT practices. The study was designed as a randomized complete block with four replications. Drainage and NO3-N fluxes were not significantly affected by the tillage in 2014, 2015, 2016, and 2017 due to substantial spatial variations among lysimeters within each treatment. Average cumulative seasonal drainage depths across 4 years were 22.26 and 34.46 mm for corn and 24.95 and 28.16 mm for soybean under NT and CT, respectively. Averaged 4-yr cumulative NO3-N losses were 17.61 and 26.74 kg ha-1 for corn and 25.47 and 23.56 kg ha-1 for soybean under NT and CT, respectively. Flow-weighted NO3-N concentrations over 4 years were 57.9 and 65.7 mg L-1 for corn while those for soybean were 74.8 and 67.0 mg L-1 under NT and CT, respectively. Nitrate-nitrogen concentrations generally exceed the safe drinking water standard of 10 mg L-1. Reducing N inputs in well-drained soils and using site specific N and irrigation management practices are required to lower input expenses, reduce N leaching losses and sustain environmental quality. Keywords: Drainage, Fluxes, Leaching, Lysimeter, Nitrate-nitrogen, Rootzone, Tillage.


1998 ◽  
Vol 7 (5-6) ◽  
pp. 569-581 ◽  
Author(s):  
E. TURTOLA ◽  
E. KEMPPAINEN

Losses of nitrogen (N) and phosphorus (P) from perennial grass ley on a fine sand soil were studied with five treatments: no fertilizer (1), cow slurry applied in autumn (2), winter (3) or spring (4), and mineral fertilizer applied in spring (5). For N, the total amounts applied (1992-96) were 0, 772, 807, 805 and 510 kg ha-1 and for P 0, 141, 119, 143 and 107 kg ha-1, respectively. In the first year (establishment of the ley, 1992-93), N losses (drainage + surface runoff) were slightly higher after application of slurry in autumn (with immediate ploughing, treatment 2) than in treatments 1, 4 and 5 (21 kg ha-1 vs. 17 kg ha-1), but the respective P losses (0.7-0.9 kg ha-1) were not affected. During the ley years (1993-96) the N and P losses were increased by surface application of fertilizers and by abundance of surface runoff (83-100% of the total runoff). Nutrient losses were extremely high after slurry application in autumn and winter, accounting for 11% and 33% of the applied N and 17% and 59% of the applied P, respectively. The N losses during the ley years from treatments 1-5 were 13, 62, 191, 23 and 24 kg ha-1, where the proportion of NH4-N was 21, 49, 56, 33 and 39%. The respective P losses were 0.73, 16, 54, 4.2 and 4.0 kg ha-1, where the proportion of PO4-P was 52, 85, 77, 68 and 64%.;


Author(s):  
J.M. Chrystal ◽  
R.M.Monaghan D. Dalley ◽  
T. Styles

The expansion of the southern dairy herd in New Zealand has raised a number of concerns about the sustainability of grazing brassica forage crops. Here we provide an assessment of the contribution of these crops to the potential for N losses to water at a wholefarm system level, and compare these with metrics derived for systems that use alternative approaches for wintering cows. The risks of nutrient losses to water from six Monitor Farms that use contrasting approaches to dairy cow wintering were assessed using the Overseer® Nutrient budgets model (Overseer). This modelling assessment was supplemented with detailed information about the management of effluent generated from off-paddock cow wintering facilities such as wintering pads and covered housing. Predictions of N losses from individual farm blocks indicated that both winter- and summer-grazed brassica forage crops have a relatively high potential for N leaching losses. Expressed at a whole-system level (i.e. accounting for the milking platform, winter forage crop and other support land), the winter forage crops accounted for between 11 and 24% of total N leaching losses, despite representing only 4 to 9% of the area. The high N leaching losses predicted for summer-grazed forage crops were attributed to the limited opportunity for N uptake of excreted urinary N by the following new pasture. Another risk identified for some farms was the current practice of applying effluents collected from off-paddock facilities to land during winter. These assessments suggest that off-paddock cow wintering systems can help to minimise N losses from farms to water, although the storage and safe return to land of effluents and manures generated from the housing facilities is essential if this potential benefit is to be realised. Our assessments also suggest that summer crop paddocks have a relatively high potential for N leaching losses, although further research is needed to confirm this. Keywords: dairy cow wintering, Southland, nitrate leaching, grazed brassica forage crops.


Author(s):  
W.N. Reynolds

Following the 2007/08 drought, we experienced poor pasture production and persistence on our dairy farm in north Waikato, leading to decreased milksolids production and a greater reliance on bought-in feed. It is estimated that the cost of this to our farming operation was about $1300 per hectare per year in lost operating profit. While climate and black beetle were factors, they did not explain everything, and other factors were also involved. In the last 3 years we have changed our management strategies to better withstand dry summers, the catalyst for which was becoming the DairyNZ Pasture Improvement Focus Farm for the north Waikato. The major changes we made were to reduce stocking rate, actively manage pastures in summer to reduce over-grazing, and pay more attention to detail in our pasture renewal programme. To date the result has been a reduced need for pasture renewal, a lift in whole farm performance and increased profitability. Keywords: Focus farm, over-grazing, pasture management, pasture persistence, profitability


Author(s):  
Cecile De Klein ◽  
Jim Paton ◽  
Stewart Ledgard

Strategic de-stocking in winter is a common management practice on dairy farms in Southland, New Zealand, to protect the soil against pugging damage. This paper examines whether this practice can also be used to reduce nitrate leaching losses. Model analyses and field measurements were used to estimate nitrate leaching losses and pasture production under two strategic de-stocking regimes: 3 months off-farm or 5 months on a feed pad with effluent collected and applied back to the land. The model analyses, based on the results of a long-term farmlet study under conventional grazing and on information for an average New Zealand farm, suggested that the 3- or 5-month de-stocking could reduce nitrate leaching losses by about 20% or 35-50%, respectively compared to a conventional grazing system. Field measurements on the Taieri Plain in Otago support these findings, although the results to date are confounded by drought conditions during the 1998 and 1999 seasons. The average nitrate concentration of the drainage water of a 5-month strategic de-stocking treatment was about 60% lower than under conventional grazing. Pasture production of the 5-month strategic de-stocking regime with effluent return was estimated based on data for apparent N efficiency of excreta patches versus uniformlyspread farm dairy effluent N. The results suggested that a strategic de-stocking regime could increase pasture production by about 2 to 8%. A cost/ benefit analysis of the 5-month de-stocking system using a feed pad, comparing additional capital and operational costs with additional income from a 5% increase in DM production, show a positive return on capital for an average New Zealand dairy farm. This suggests that a strategic destocking system has good potential as a management tool to reduce nitrate leaching losses in nitrate sensitive areas whilst being economically viable, particularly on farms where an effluent application system or a feed pad are already in place. Keywords: dairying, feed pads, nitrate leaching, nitrogen efficiency, productivity, strategic de-stocking


2011 ◽  
Vol 21 (2) ◽  
pp. 176-180 ◽  
Author(s):  
P. Chris Wilson ◽  
Joseph P. Albano

Nitrate-nitrogen (N) losses in surface drainage and runoff water from ornamental plant production areas can be considerable. In N-limited watersheds, discharge of N from production areas can have negative impacts on nontarget aquatic systems. This study monitored nitrate-N concentrations in production area drainage water originating from a foliage plant production area. Concentrations in drainage water were monitored during the transition from 100% reliance on fertigation using urea and nitrate-based soluble formulations (SF) to a nitrate-based controlled-release formulation (CRF). During the SF use period, nitrate-N concentrations ranged from 0.5 to 322.0 mg·L−1 with a median concentration of 31.2 mg·L−1. Conversely, nitrate-N concentrations during the controlled-release fertilization program ranged from 0 to 147.9 mg·L−1 with a median concentration of 0.9 mg·L−1. This project demonstrates that nitrate-N concentrations in drainage water during the CRF program were reduced by 94% to 97% at the 10th through 95th percentiles relative to the SF fertilization program. Nitrate-N concentrations in drainage water from foliage plant production areas can be reduced by using CRF fertilizer formulations relative to SF formulations/fertigation. Similar results should be expected for other similar containerized crops. Managers located within N-limited watersheds facing N water quality regulations should consider the use of CRF fertilizer formulations as a potential tool (in addition to appropriate application rates and irrigation management) for reducing production impacts on water quality.


Sign in / Sign up

Export Citation Format

Share Document