scholarly journals Relationships between bottom water carbonate saturation and element/Ca ratios in coretop samples of the benthic foraminifera <i>Oridorsalis umbonatus</i>

2012 ◽  
Vol 9 (2) ◽  
pp. 1483-1510 ◽  
Author(s):  
C. F. Dawber ◽  
A. Tripati

Abstract. Elemental ratios in benthic foraminifera have been used to reconstruct bottom water temperature and carbonate saturation (Δ[CO32−]). We present elemental data for the long-ranging benthic foraminifera Oridorsalis umbonatus from sediment core tops that span a narrow range of temperatures and a wide range of saturation states. B/Ca, Li/Ca, Sr/Ca and Mg/Ca ratios exhibit positive correlations with bottom water carbonate saturation. The sensitivity of individual element/calcium ratios to bottom water Δ [CO32−] varies considerably, with B/Ca being most sensitive and Sr/Ca the least sensitive. The empirically derived sensitivity of B/Ca, Li/Ca, Mg/Ca and Sr/Ca to bottom water Δ [CO32−] are 0.433 ± 0.053 and 0.0561 ± 0.0084 μmol mol−1 per μmol kg−1 and 0.0164 ± 0.0015 and 0.00241 ± 0.0004 μmol mol−1 per μmol kg−1, respectively. To assess the fidelity of these relationships and the possibility of applying these relationships to earlier periods of Earth history, we examine the mechanisms governing elemental incorporation into foraminiferal calcite. Empirical partition coefficients for Li and Sr are consistent with Rayleigh fractionation from an internal pool used for calcification. For O. umbonatus and other benthic species, we show that the fraction of Ca remaining in the pool is a function of bottom water Δ [CO32−], and can be explained by either a growth rate effect and/or the energetic cost of raising vesicle pH at the site of calcification. Empirical partition coefficients for Mg and B may also be controlled by Rayleigh fractionation, but require that either the fractionation factor from the internal pool is smaller than the inorganic partition coefficient and/or additional fractionation mechanisms. O. umbonatus element ratio data may also be consistent with fractionation according to the surface entrapment model and/or the presence of discrete high- and low-Mg calcite phases. However at present we are limited in our ability to assess these mechanisms. The new X/Ca data for O. umbonatus provide constraints to test the role of these mechanisms in the future.

2012 ◽  
Vol 9 (8) ◽  
pp. 3029-3045 ◽  
Author(s):  
C. F. Dawber ◽  
A. Tripati

Abstract. Elemental ratios in benthic foraminifera have been used to reconstruct bottom water temperature and carbonate saturation (Δ[CO32−]). We present elemental data for the long-ranging benthic foraminifera Oridorsalis umbonatus from sediment core tops that span a narrow range of temperatures and a wide range of saturation states. B/Ca, Li/Ca, Sr/Ca and Mg/Ca ratios exhibit positive correlations with bottom water carbonate saturation. The sensitivity of individual element/calcium ratios to bottom water Δ[CO32−] varies considerably, with B/Ca being most sensitive and Sr/Ca the least sensitive. The empirically derived sensitivity of B/Ca, Li/Ca, Mg/Ca and Sr/Ca to bottom water Δ[CO32−] are 0.433 ± 0.053 and 0.0561 ± 0.0084 μmol mol−1 μmol kg−1 and 0.0164 ± 0.0015 and 0.00241 ± 0.0004 mmol mol−1μmol kg−1, respectively. To assess the fidelity of these relationships and the possibility of applying these relationships to earlier periods of Earth history, we examine the mechanisms governing elemental incorporation into foraminiferal calcite. Empirical partition coefficients for Li and Sr are consistent with Rayleigh fractionation from an internal pool used for calcification. For O. umbonatus and other benthic species, we show that the fraction of Ca remaining in the pool is a function of bottom water Δ[CO32−], and can be explained by either a growth rate effect and/or the energetic cost of raising vesicle pH at the site of calcification. Empirical partition coefficients for Mg and B may also be controlled by Rayleigh fractionation, but require that either the fractionation factor from the internal pool is smaller than the inorganic partition coefficient and/or additional fractionation mechanisms. O. umbonatus element ratio data may also be consistent with fractionation according to the surface entrapment model and/or the presence of discrete high- and low-Mg calcite phases. However, at present we are limited in our ability to assess these mechanisms. The new X/Ca data for O. umbonatus provide constraints to test the role of these mechanisms in the future.


2013 ◽  
Vol 10 (7) ◽  
pp. 5125-5138 ◽  
Author(s):  
J. Groeneveld ◽  
H. L. Filipsson

Abstract. Shelf and coastal regions are exceptionally important for many countries as they provide the main habitat for many economically important fish and shellfish species. With ongoing climate change and human-induced eutrophication the shelf regions are especially affected, resulting in increased temperatures and stratification as well as oxygen depletion of the bottom waters. In order to be able to predict the magnitude of these changes in the future, it is necessary to study how they varied in the past. Commonly used foraminiferal climate and environmental proxies, e.g., stable isotopes and trace metal/Ca ratios, that are applied in open-ocean settings are not necessarily applicable in shelf regions, either as faunas are significantly different or as conditions can change much faster compared to the open ocean. In this study we explore the use of Mg/Ca as paleothermometer and Mn/Ca as a potential proxy for changing dissolved oxygen conditions in bottom water on the benthic foraminifera Bulimina marginata and Globobulimina turgida. Living specimens were collected from the Skagerrak and the Gullmar Fjord (SW Sweden); the latter is hypoxic for several months a year. As the specimens were alive when collected, we assume it unlikely that any diagenetic coatings have already significantly affected the trace metal/Ca ratios. The Mg/Ca ratios are similar to previously published values but display much larger variation than would be expected from the annual temperature change of less than 2 °C. An additional impact of the difference in the calcite saturation state between the Skagerrak and the Gullmar Fjord could explain the results. Mn/Ca ratios from G. turgida can potentially be related to variations in dissolved oxygen of the habitat where the foraminifera calcify. Samples from the Skagerrak display increased Mn/Ca in specimens that lived deeper in the sediment than those that lived near the surface. G. turgida samples from the low-oxygen Gullmar Fjord showed significantly increased Mn/Ca, being highest when bottom water dissolved oxygen was at a minimum. Our study suggests that trace metal/Ca ratios in benthic foraminifera from shelf regions have the potential to record past variations in bottom water temperature and dissolved oxygen concentrations, but an additional impact of the inorganic carbonate chemistry cannot be excluded.


2012 ◽  
Vol 8 (6) ◽  
pp. 1957-1971 ◽  
Author(s):  
C. F. Dawber ◽  
A. K. Tripati

Abstract. Culturing studies and empirically based core top calibrations have been used to infer that elemental ratios in benthic foraminifera can be used as proxies to reconstruct past variations in bottom water temperature and saturation state (Δ [CO32−]). However the mechanisms linking elemental ratios to these parameters are poorly constrained. Here, we explore the environmental parameters influencing the incorporation of B, Li, Sr and Mg in Oridorsalis umbonatus in early Cenozoic sediments from Ocean Drilling Program Site 1209. We investigate the influence of middle Eocene variations in intermediate water Δ [CO32−] using relationships developed from core top samples. The fidelity of bottom water Δ[CO32−] reconstructions based on single element ratios is assessed by comparing the X/Ca-based reconstructions to each other and to carbon cycle proxy records (benthic foraminifera δ13C, organic carbon content, foraminifera dissolution indices), and a seawater δ18O reconstruction for Site 1209. Discrepancies in the reconstructed Δ[CO32−] values based on these different metal ratios suggest that there are still gaps in our understanding of the parameters influencing X/Ca and demonstrate that caution is required when interpreting palaeo-reconstructions that are derived from a single elemental ratio. The downcore record of O. umbonatus Mg/Ca does not exhibit any similarities with the Li/Ca, B/Ca and Sr/Ca records, suggesting that the environmental parameters influencing Mg/Ca may be different for this species, consistent with temperature as the strongest control on this elemental ratio. This hypothesis is supported by the coefficients of multiple linear regression models on published Mg/Ca data. An incomplete understanding of the controls on elemental incorporation into benthic foraminifera hinders our ability to confidently quantify changes in saturation state using single X/Ca reconstructions over a range of timescales.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 474
Author(s):  
Evgenia V. Dorokhova ◽  
Francisco J. Rodríguez-Tovar ◽  
Dmitry V. Dorokhov ◽  
Liubov A. Kuleshova ◽  
Anxo Mena ◽  
...  

Multidisciplinary studies have allowed us to describe the abiotic landscapes and, thus, reveal the ichnological and benthic foraminifera trends in a deep-water gateway. Mesoscale landscape mapping is presented based on the bathymetric position index, substrate types and near-bottom water temperature. Four sediment cores, retrieved from the entrance, centre and exit of the gap, were subject to computed tomography, ichnological and benthic foraminifera studies. A high diversity of abiotic landscapes in the relatively small area of Discovery Gap is detected and its landscape is characterized by 23 landscape types. The most heterogeneous abiotic factor is a topography that is associated with sediment patchiness and substrate variability. The ichnological and tomographical studies of the sediment cores demonstrate lateral and temporal differences in the macrobenthic tracemaker behaviour. The ichnofossils assemblage of the sediment core can be assigned to the Zoophycos ichnofacies with a higher presence of Zoophycos in the entrance site of the gap and during glacial intervals. Higher benthic foraminifera diversity and species richness during the Holocene are also registered in the southern part of the gap compared to the northern part. The spatial and temporal differences in macro-benthos behavior and benthic foraminifera distribution in the deep-water gateway are proposed to relate to the topographical variations of the Antarctic Bottom Water and its influence on the hydrodynamic regime, nutrient transport, etc.


2011 ◽  
Vol 7 (6) ◽  
pp. 3795-3821 ◽  
Author(s):  
C. F. Dawber ◽  
A. K. Tripati

Abstract. Culturing studies and empirical-based calibrations suggest that elemental ratios in benthic foraminifera can be used as proxies to reconstruct past variations in bottom water temperature and saturation state (Δ[CO32−]). However the mechanism(s) linking elemental ratios to Δ[CO32−] are poorly constrained. We present middle Eocene records of Oridorsalis umbonatus Li/Ca, B/Ca, Mg/Ca and Sr/Ca from Ocean Drilling Program Site 1209. We apply calibrations developed from core top samples to estimate middle Eocene variations in intermediate water Δ[CO32−]. The fidelity of bottom water Δ[CO32−] reconstructions based on single element ratios are assessed by comparing the X/Ca-based reconstructions to each other and to carbon cycle proxy records (benthic foraminifera δ13C, organic carbon content, foraminifera dissolution indices), and a seawater δ18O reconstruction for Site 1209. Discrepancies in the reconstructed Δ[CO32−] values for the middle Eocene based on these different metal ratios suggests that there are still gaps in our understanding of the parameters influencing X/Ca. The downcore record of O. umbonatus Mg/Ca does not exhibit any similarities with the Li/Ca, B/Ca and Sr/Ca records, suggesting that bottom water Δ[CO32−] is not the dominant influence on Mg/Ca ratios for this species. This hypothesis is supported by the coefficients of multiple linear regression models on new and published Mg/Ca data.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths &gt;1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths &lt;300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths &lt;300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2016 ◽  
Vol 182 ◽  
pp. 211-225 ◽  
Author(s):  
Maria Virgínia Alves Martins ◽  
Anita Fernandes Souza Pinto ◽  
Fabrizio Frontalini ◽  
Maria Clara Machado da Fonseca ◽  
Denise Lara Terroso ◽  
...  

2010 ◽  
Vol 90 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ivana Carevic ◽  
Darivojka Ljubovic-Obradovic ◽  
Monika Bozinovic ◽  
Velimir Jovanovic

The Upper Barremian-Lower Aptian succession is recorded from a limestone sequence that crops out in the surrounding of Rakova Bara in the Carpatho-Balkanides range in northeastern Serbia. The micropalaeontological and sedimentological studies lead to recognition of the two types of microfacies. The benthic foraminiferal association consists of Vercorsella laurentii, Rumanoloculina robusta, Praechrysalidina infracretaceae, Dictyoconus gr. arabicus, Debarina hahounerensis, Charentia cuvilieri and Pseudocyclammina lituus that confirm the stratigraphical and palaeoenvironmental connection of the microfossil assemblages with the classical Urgonian-type, shallow-water carbonate sedimentation. The association documented for the first time in the study area is considered typical of the Tethyan Realm. The stratigraphical position of the benthic foraminifera species within the Upper Barremian-Lower Aptian interval is discussed. The Urgonian Limestone's of the studied section are comparable with adjacent areas of eastern Serbia and Romanian South Carpathians. .


Sign in / Sign up

Export Citation Format

Share Document