The bacterial lifecycle in cotton and polyester textiles

2020 ◽  
Author(s):  
Andreas Moellebjerg ◽  
Rikke Meyer

<p>Colonization of textiles and subsequent metabolic degradation of sweat and sebum components by axillary skin bacteria cause the characteristic sweat malodor and discoloring of dirty clothes. Once inside the textile, the bacteria can form biofilms that are hard to remove by conventional washing. When the biofilm persists after washing, the textiles retain the sweat odor. In addition to posing a huge industrial problem, textile biofilms constitute an interesting case study of bacterial behavior in periodically wetted and dried substrates with varying surface hydrophobicity. Here we aim to study the bacterial behavior in each of the four stages of the bacterial lifecycle in textiles: adhesion, growth, drying and washing. To accomplish this, we designed a novel in vitro model to mimic physiological sweating while wearing cotton and polyester textiles. The hydrophobic polyester adhered bacteria more strongly and absorbed more sebum, the bacteria’s primary nutrient source. Bacteria were therefore initially more active in polyester textiles than in cotton. However, polyester did not bind water as well as cotton. The increased water content of cotton allowed the bacteria to retain a higher activity after the textile had dried. However, neither of the textiles retained enough water upon drying to prevent the bacteria from irreversibly adhering to the textile fibers by capillary action. This demonstrates that bacterial colonization depends on the hydrophobic and hygroscopic properties of the colonized material while highlighting the possibility of controlling bacterial behavior by either changing the surface properties or the surrounding environment.</p>

2008 ◽  
Vol 11 (11) ◽  
pp. 1132-1141 ◽  
Author(s):  
Colin W Binns ◽  
Andy H Lee ◽  
Michelle L Fraser

AbstractThe present paper explores the level of evidence required to justify giving dietary advice to the public. There are important practical differences between the development of public health nutrition guidelines and guidelines for clinical practice. While the gold standard for evidence for clinical practice guidelines is a meta-analysis of a number of randomised controlled trials, this is often unrealistic and sometimes unethical for the evaluation of public health nutrition interventions. Hence, epidemiological studies make up the bulk of evidence for nutrition guidelines. Tea and coffee are an interesting case study in relation to this issue. They are two of the most commonly consumed beverages worldwide, yet there is little dietary advice on their use. The evidence for a relationship between coffee or tea consumption and several diseases is discussed. The available studies, predominantly epidemiological, together with animal and in vitro studies, indicate that coffee and tea are both safe beverages. However, tea is the healthier option because it has a possible role in the prevention of several cancers and CVD. While the evidence for such relationships is not strong, the public will continue to drink both tea and coffee, and will continue to ask nutritionists to make recommendations. It is therefore argued that advice should be given on the best available data, as waiting for complete data to become available could have severe consequences for public health.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

1998 ◽  
Vol 80 (09) ◽  
pp. 437-442 ◽  
Author(s):  
I. Hioki ◽  
K. Onoda ◽  
T. Shimono ◽  
H. Shimpo ◽  
K. Tanaka ◽  
...  

SummaryAlterations in platelet aggregability may play a role in the pathogenesis of qualitative platelet defects associated with cardiopulmonary bypass (CPB). We circulated fresh heparinized whole blood through tubing sets coated with heparin (C group, n = 10) and through non-coated sets (N group, n = 10) as a simulated CPB circuit. Shear stress (108 dyne/cm2)-induced platelet aggregation (hSIPA), plasma von Willebrand factor (vWF) activity and platelet glycoprotein (GP) Ib expression were measured, before, during, and after this in vitro set up of circulation. In the two groups, the extent of hSIPA significantly decreased during circulation and was partially restored after circulation. Decreases in the extent of hSIPA were significantly less with use of heparin-coated circuits. There was an equivalent reduction in plasma vWF activity, in the two groups. Expression of platelet surface GP Ib decreased significantly during circulation and recovered after circulation. Reduction of surface GP Ib expression during circulation was significantly less in the C group than that in the N group. Decrease in surface GP Ib expression correlated (r = 0.88 in either group) with the magnitude of hSIPA, in the two groups. The progressive removal of surface GP Ib was mainly attributed to redistribution of GP Ib from the membrane skeleton into the cytoskeleton. Our observations suggest that use of heparin-coated circuits partly blocks the reduction of hSIPA, as a result of a lesser degree of redistribution of GP Ib.


Sign in / Sign up

Export Citation Format

Share Document