Antibiofilm activity of Human Milk Oligosaccharides against pathogens isolated from cystic fibrosis patients

2020 ◽  
Author(s):  
Sylwia Jarzynka ◽  
Kamila Strom ◽  
Oliwia Makarewicz ◽  
Anna Minkiewicz-Zochniak ◽  
Anna Koryszewska-Baginska ◽  
...  

<p><strong>Background</strong>: Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after fat and lactose, that promote infant health. Recent studies have shown that HMOs demonstrated antimicrobial and antibiofilm activity against different strains. Cystic fibrosis (CF), it is one of the major respiratory diseases, the clinical management and definitive treatment of CF biofilm-mediated chronic bacterial lung infection remains a challenge.</p> <p><strong>Objective</strong>: In this study, we examine HMOs antibiofilm activity against pathogens isolated from CF patients.</p> <p><strong>Methods and results</strong>: In current work, we investigated the antibiofilm activity of the saccharide fraction obtained from pooled human milk of 9 donors against strains of: <em>Acinetobacter baumannii</em>, <em>Pseudomonas aeruginosa</em>, <em>Enterobacteriaceae</em>, <em>Staphylococcus aureus</em> and <em>Burkholderia cenocepacia</em>, an intrinsically multi-resistant pathogen associated with high mortality in CF patients. We tested the ability of HMOs to inhibit biofilm formation and to eradicate matured biofilms. Live/dead staining of the biofilms and CLSM image acquisition were used.</p> <p>The pooled HMOs showed a biofilm eradicating effect on most tested pathogens. The HMOs effectively killed the bacteria at high concentration (20 mg/ml, corresponds to the concentration in human milk), but visible reduction of viable bacteria and biofilm mass was observed already at lower concentrations that varied between the species. The biofilm mass was also reduced in almost all pathogenic biofilms.</p> <p>The data presented in this paper supporting the importance and potential inhibitory effect of HMOs in biofilm formation. HMOs could potentially be used as novel therapeutics to treat or prevent infectious disease in patient with CF.</p>

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1461 ◽  
Author(s):  
Stine Bering

This review focuses on the evidence for health benefits of human milk oligosaccharides (HMOs) for preterm infants to stimulate gut adaptation and reduce the incidence of necrotizing enterocolitis (NEC) in early life. The health benefits of breastfeeding are partly explained by the abundant HMOs that serve as prebiotics and immunomodulators. Gut immaturity in preterm infants leads to difficulties in tolerating enteral feeding and bacterial colonization and a high sensitivity to NEC, particularly when breast milk is insufficient. Due to the immaturity of the preterm infants, their response to HMOs could be different from that in term infants. The concentration of HMOs in human milk is highly variable and there is no evidence to support a specifically adapted high concentration in preterm milk. Further, the gut microbiota is not only different but also highly variable after preterm birth. Studies in pigs as models for preterm infants indicate that HMO supplementation to formula does not mature the gut or prevent NEC during the first weeks after preterm birth and the effects may depend on a certain stage of gut maturity. Supplemented HMOs may become more important for gut protection in the preterm infants when the gut has reached a more mature phase.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sylwia Jarzynka ◽  
Riccardo Spott ◽  
Tinatini Tchatchiashvili ◽  
Nico Ueberschaar ◽  
Mark Grevsen Martinet ◽  
...  

Human milk oligosaccharides (HMOs) have been shown to exhibit plenty of benefits for infants, such as prebiotic activity shaping the gut microbiota and immunomodulatory and anti-inflammatory activity. For some pathogenic bacteria, antimicrobial activity has been proved, but most studies focus on group B streptococci. In the present study, we investigated the antimicrobial and antibiofilm activities of the total and fractionated HMOs from pooled human milk against four common human pathogenic Gram-negative species (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cenocepacia) and three Gram-positive species (Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis). The activity of HMOs against enterococci and B. cenocepacia are addressed here for the first time. We showed that HMOs exhibit a predominant activity against the Gram-positive species, with E. faecalis being the most sensitive to the HMOs, both in planktonic bacteria and in biofilms. In further tests, we could exclude fucosyllactose as the antibacterial component. The biological significance of these findings may lie in the prevention of skin infections of the mother’s breast as a consequence of breastfeeding-induced skin laceration and/or protection of the infants’ nasopharynx and lung from respiratory pathogens such as staphylococci.


2014 ◽  
Vol 5 (3) ◽  
pp. 273-283 ◽  
Author(s):  
S. Musilova ◽  
V. Rada ◽  
E. Vlkova ◽  
V. Bunesova

Human milk is the gold standard for nourishment of early infants because it contains a number of bioactive components, such as human milk oligosaccharides (HMOs). The high concentration and structural diversity of HMOs are unique to humans. HMOs are a group of complex and diverse glycans that are resistant to gastrointestinal digestion and reach the infant colon as the first prebiotics. N-acetyl-glucosamine containing oligosaccharides were first identified 50 years ago as the ‘bifidus factor’, a selective growth substrate for intestinal bifidobacteria, thus providing a conceptual basis for HMO-specific bifidogenic activity. Bifidobacterial species are the main utilisers of HMOs in the gastrointestinal tract and represent the dominant microbiota of breast-fed infants, and they may play an important role in maintaining the general health of newborn children. Oligosaccharides are also known to directly interact with the surface of pathogenic bacteria, and various oligosaccharides in milk are believed to inhibit the binding of pathogens and toxins to host cell receptors. Furthermore, HMOs are thought to contribute to the development of infant intestine and brain. Oligosaccharides currently added to infant formula are structurally different from the oligosaccharides naturally occurring in human milk and, therefore, they are unlikely to mimic some of the structure-specific effects. In this review, we describe how HMOs can modulate gut microbiota. This article summarises information up to date about the relationship between the intestinal microbiota and HMOs, and other possible indirect effects of HMOs on intestinal environment.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianghui Cheng ◽  
Mensiena B. G. Kiewiet ◽  
Madelon J. Logtenberg ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document