Beneficial effects of human milk oligosaccharides on gut microbiota

2014 ◽  
Vol 5 (3) ◽  
pp. 273-283 ◽  
Author(s):  
S. Musilova ◽  
V. Rada ◽  
E. Vlkova ◽  
V. Bunesova

Human milk is the gold standard for nourishment of early infants because it contains a number of bioactive components, such as human milk oligosaccharides (HMOs). The high concentration and structural diversity of HMOs are unique to humans. HMOs are a group of complex and diverse glycans that are resistant to gastrointestinal digestion and reach the infant colon as the first prebiotics. N-acetyl-glucosamine containing oligosaccharides were first identified 50 years ago as the ‘bifidus factor’, a selective growth substrate for intestinal bifidobacteria, thus providing a conceptual basis for HMO-specific bifidogenic activity. Bifidobacterial species are the main utilisers of HMOs in the gastrointestinal tract and represent the dominant microbiota of breast-fed infants, and they may play an important role in maintaining the general health of newborn children. Oligosaccharides are also known to directly interact with the surface of pathogenic bacteria, and various oligosaccharides in milk are believed to inhibit the binding of pathogens and toxins to host cell receptors. Furthermore, HMOs are thought to contribute to the development of infant intestine and brain. Oligosaccharides currently added to infant formula are structurally different from the oligosaccharides naturally occurring in human milk and, therefore, they are unlikely to mimic some of the structure-specific effects. In this review, we describe how HMOs can modulate gut microbiota. This article summarises information up to date about the relationship between the intestinal microbiota and HMOs, and other possible indirect effects of HMOs on intestinal environment.

2020 ◽  
Vol 11 (11) ◽  
pp. 9445-9467
Author(s):  
Chunli Kong ◽  
Marijke M. Faas ◽  
Paul de Vos ◽  
Renate Akkerman

This review updates current knowledge on the structure-specific effects of human milk oligosaccharides and non-digestible carbohydrates in infant formula on the colonization of the infants gut by the microbiota as well as the composition and maturation of the gut immune barrier.


Author(s):  
Jonas Hauser ◽  
Edoardo Pisa ◽  
Alejandro Arias Vásquez ◽  
Flavio Tomasi ◽  
Alice Traversa ◽  
...  

AbstractBreastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6′SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6′SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6′SL-deficient milk. To test whether lactational 6′SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6′SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6′SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.


2014 ◽  
Vol 14 (1) ◽  
pp. 491-502 ◽  
Author(s):  
Maria Lorna A. De Leoz ◽  
Karen M. Kalanetra ◽  
Nicholas A. Bokulich ◽  
John S. Strum ◽  
Mark A. Underwood ◽  
...  

2020 ◽  
Vol 72 ◽  
pp. 104074 ◽  
Author(s):  
Clodagh Walsh ◽  
Jonathan A. Lane ◽  
Douwe van Sinderen ◽  
Rita M. Hickey

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Yaqiang Bai ◽  
Jia Tao ◽  
Jiaorui Zhou ◽  
Qingjie Fan ◽  
Man Liu ◽  
...  

ABSTRACT The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.


2012 ◽  
Vol 108 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
Evelyn Jantscher-Krenn ◽  
Tineke Lauwaet ◽  
Laura A. Bliss ◽  
Sharon L. Reed ◽  
Frances D. Gillin ◽  
...  

Human milk oligosaccharides (HMO), complex sugars that are highly abundant in breast milk, block viral and bacterial attachment to the infant's intestinal epithelium and lower the risk of infections. We hypothesised that HMO also prevent infections with the protozoan parasiteEntamoeba histolytica,as its major virulence factor is a lectin that facilitates parasite attachment and cytotoxicity and binds galactose (Gal) andN-acetyl-galactosamine. HMO contain Gal, are only minimally digested in the small intestine and reach the colon, the site ofE. histolyticainfection. The objective of the present study was to investigate whether HMO reduceE. histolyticaattachment and cytotoxicity. Ourin vitroresults show that physiological concentrations of isolated, pooled HMO detachE. histolyticaby more than 80 %. In addition, HMO rescueE. histolytica-induced destruction of human intestinal epithelial HT-29 cells in a dose-dependent manner. The cytoprotective effects were structure-specific. Lacto-N-tetraose with its terminal Gal rescued up to 80 % of the HT-29 cells, while HMO with fucose α1–2-linked to the terminal Gal had no effect. Galacto-oligosaccharides (GOS), which also contain terminal Gal and are currently added to infant formula to mimic some of the beneficial effects of HMO, completely abolishedE. histolyticaattachment and cytotoxicity at 8 mg/ml. Although our results need to be confirmedin vivo, they may provide one explanation for why breast-fed infants are at lower risk ofE. histolyticainfections. HMO and GOS are heat tolerant, stable, safe and in the case of GOS, inexpensive, which could make them valuable candidates as alternative preventive and therapeutic anti-amoebic agents.


2020 ◽  
Author(s):  
Sylwia Jarzynka ◽  
Kamila Strom ◽  
Oliwia Makarewicz ◽  
Anna Minkiewicz-Zochniak ◽  
Anna Koryszewska-Baginska ◽  
...  

<p><strong>Background</strong>: Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after fat and lactose, that promote infant health. Recent studies have shown that HMOs demonstrated antimicrobial and antibiofilm activity against different strains. Cystic fibrosis (CF), it is one of the major respiratory diseases, the clinical management and definitive treatment of CF biofilm-mediated chronic bacterial lung infection remains a challenge.</p> <p><strong>Objective</strong>: In this study, we examine HMOs antibiofilm activity against pathogens isolated from CF patients.</p> <p><strong>Methods and results</strong>: In current work, we investigated the antibiofilm activity of the saccharide fraction obtained from pooled human milk of 9 donors against strains of: <em>Acinetobacter baumannii</em>, <em>Pseudomonas aeruginosa</em>, <em>Enterobacteriaceae</em>, <em>Staphylococcus aureus</em> and <em>Burkholderia cenocepacia</em>, an intrinsically multi-resistant pathogen associated with high mortality in CF patients. We tested the ability of HMOs to inhibit biofilm formation and to eradicate matured biofilms. Live/dead staining of the biofilms and CLSM image acquisition were used.</p> <p>The pooled HMOs showed a biofilm eradicating effect on most tested pathogens. The HMOs effectively killed the bacteria at high concentration (20 mg/ml, corresponds to the concentration in human milk), but visible reduction of viable bacteria and biofilm mass was observed already at lower concentrations that varied between the species. The biofilm mass was also reduced in almost all pathogenic biofilms.</p> <p>The data presented in this paper supporting the importance and potential inhibitory effect of HMOs in biofilm formation. HMOs could potentially be used as novel therapeutics to treat or prevent infectious disease in patient with CF.</p>


Sign in / Sign up

Export Citation Format

Share Document