scholarly journals Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria

2016 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
J. Ruan ◽  
F. Kherbouche ◽  
D. Genty ◽  
D. Blamart ◽  
H. Cheng ◽  
...  

Abstract. Middle Holocene cultures have been widely studied around the Eastern-Mediterranean basin in the last 30 years and past cultural activities have been commonly linked with regional climate changes. However, in many cases such linkage is equivocal, in part due to existing climatic evidence that has been derived from areas outside the distribution of ancient settlements, leading to uncertainty from complex spatial heterogeneity in both climate and demography. A few high-resolution well-dated paleoclimate records were recently established using speleothems in the Central and Eastern-Mediterranean basin, however, the scarcity of such records in the western part of the Mediterranean prevents us from correlating past climate evolutions across the basin and deciphering climate–culture relation at fine timescales. Here we report the first decadal-resolved Mid-Holocene climate proxy records from the Western-Mediterranean basin based on the stable carbon and oxygen isotopes analyses of two U/Th dated stalagmites from the Gueldaman GLD1 Cave in Northern Algeria. Comparison of our records with those from Italy and Israel reveals synchronous (multi) centennial dry phases centered at ca. 5600, ca. 5200 and ca. 4200 yr BP across the Mediterranean basin. New calibrated radiocarbon dating constrains reasonably well the age of rich anthropogenic deposits (e.g., faunal remains, pottery, charcoal) excavated inside the cave, which allows the comparison between in situ evidence of human occupation and of climate change. This approach shows that the timing of a prolonged drought at ca. 4400–3800 yr BP blankets the onset of cave abandonment shortly after ca. 4403 cal yr BP, supporting the hypothesis that a climate anomaly may have played a role in this cultural disruption.

2015 ◽  
Vol 11 (4) ◽  
pp. 2729-2762 ◽  
Author(s):  
J. Ruan ◽  
F. Kherbouche ◽  
D. Genty ◽  
D. Blamart ◽  
H. Cheng ◽  
...  

Abstract. Middle Holocene cultures have been widely studied round the E-Mediterranean basin in the last 30 years and past cultural activities have been commonly linked with regional climate changes. However, in many cases such linkage is equivocal, in part due to existing climatic evidence that has been derived from areas outside the distribution of ancient settlements, leading to uncertainty from complex spatial heterogeneity in both climate and demography. A few high-resolution well-dated paleoclimate records were recently established using speleothems in the Central and E-Mediterranean basin, however, the scarcity of such records in the western part of the Mediterranean prevents us from correlating past climate evolutions across the basin and deciphering climate–culture relation at fine time scales. Here we report the first decadal-resolved Mid-Holocene climate proxy records from the W-Mediterranean basin based on the stable carbon and oxygen isotopes analyses of two U/Th dated stalagmites from the Gueldaman GLD1 Cave in N-Algeria. Comparison of our records with those from Italy and Israel reveals synchronous (multi) centennial dry phases centered at ca. 5600, ca. 5200 and ca. 4200 yr BP across the Mediterranean basin. New calibrated radiocarbon dating constrains reasonably well the age of rich anthropogenic deposits (e.g., faunal remains, pottery, charcoal) excavated inside the cave, which allows the comparison between in situ evidence of human occupation and of climate change. This approach shows that the timing of a prolonged drought at ca. 4400–3800 yr BP blankets the onset of cave abandonment shortly after ca. 4403 cal yr BP, supporting the hypothesis that a climate anomaly may have played a role in this cultural disruption.


2020 ◽  
Vol 8 ◽  
Author(s):  
Sabrina Lo Brutto ◽  
Davide Iaciofano

A survey has been carried out at four Israeli rocky sites to evaluate the diversity of the amphipod fauna on various hard substrates, still scarcely monitored, as potential pabulum for amphipod crustacean species. A survey of shallow rocky reefs along the Mediterranean coast of Israel recovered 28 species and integrated the Amphipoda checklist for the country ofIsrael with 12 newly-recorded species. Such renewed national list includes Maera schieckei Karaman & Ruffo, 1971, a rare species endemic to the Mediterranean Sea, recorded here for the first time from the southern Levant Basin. The species, described from specimens collected in the Tyrrhenian Sea in 1970, has been only recorded eight times within the whole Mediterranean Sea. A revision of the bibliography on the distribution and ecology of M. schieckei showed that, although mentioned only for the western Mediterranean basin by some authors, it is listed in the checklist of amphipods of the Aegean Sea and neighbouring seas and has been found in the eastern Mediterranean basin since 1978. Maera schieckei was rarely found in the Mediterranean, one of the most studied marine biogeographic region as concerns the amphipod fauna; and the species seems to prefer bays or gulf areas. The role of updating and monitoring faunal composition should be re-evaluated.


2010 ◽  
Vol 79 (2) ◽  
pp. 57-67 ◽  
Author(s):  
Mariella Baratti ◽  
Mariateresa Filippelli ◽  
Francesco Nardi ◽  
Giuseppe Messana

Within the Cirolanidae, a widespread family of marine isopods, about 23 genera are stygobitic and inhabit phreatic and anchialine ecosystems, with many endemic species. The Mediterranean area has a high biodiversity of subterranean cirolanids, which are considered thalassoid limnostygobionts. A molecular analysis was conducted using mtDNA genes to infer the phylogeny of species belonging to six of the seven stygobitic genera of Cirolanidae inhabiting the Mediterranean basin and to two American taxa: Faucheria faucheri, Marocolana delamarei, Saharolana seurati, Sphaeromides virei virei, Turcolana sp., 13 taxa of the genus Typhlocirolana and two American species, Antrolana lira and Speocirolana bolivari. The Typhlocirolana species are widespread in the western Mediterranean basin, with a concentration of taxa in the Maghreb region. Turcolana sp. is localised in the eastern Mediterranean, while F. faucheri and S. v. virei are north Mediterranean taxa. S. seurati, the taxon least morphologically adapted to subterranean life, belongs to a monospecific genus present in a Tunisian spring. The molecular phylogeny showed a high affinity among the American taxa and the Mediterranean Sphaeromides, clustering in the Sphaeromides group identified by previous morphological studies. Typhlocirolana species and M. delamarei constitute their sister clade within the Sphaeromides group. F. faucheri appears to be a sister clade of the Sphaeromides group. S. seurati, showing reduced troglobitic adaptations, assumes disparate and unsolved positions in the phylogenetic reconstructions. The molecular data suggest that a combination of vicariance and dispersal events, occurring from 180 to a few million years ago, combined to bring about the present distribution pattern of Mediterranean cirolanid isopods.


2018 ◽  
Vol 18 (10) ◽  
pp. 7287-7312 ◽  
Author(s):  
Arineh Cholakian ◽  
Matthias Beekmann ◽  
Augustin Colette ◽  
Isabelle Coll ◽  
Guillaume Siour ◽  
...  

Abstract. The simulation of fine organic aerosols with CTMs (chemistry–transport models) in the western Mediterranean basin has not been studied until recently. The ChArMEx (the Chemistry-Aerosol Mediterranean Experiment) SOP 1b (Special Observation Period 1b) intensive field campaign in summer of 2013 gathered a large and comprehensive data set of observations, allowing the study of different aspects of the Mediterranean atmosphere including the formation of organic aerosols (OAs) in 3-D models. In this study, we used the CHIMERE CTM to perform simulations for the duration of the SAFMED (Secondary Aerosol Formation in the MEDiterranean) period (July to August 2013) of this campaign. In particular, we evaluated four schemes for the simulation of OA, including the CHIMERE standard scheme, the VBS (volatility basis set) standard scheme with two parameterizations including aging of biogenic secondary OA, and a modified version of the VBS scheme which includes fragmentation and formation of nonvolatile OA. The results from these four schemes are compared to observations at two stations in the western Mediterranean basin, located on Ersa, Cap Corse (Corsica, France), and at Cap Es Pinar (Mallorca, Spain). These observations include OA mass concentration, PMF (positive matrix factorization) results of different OA fractions, and 14C observations showing the fossil or nonfossil origins of carbonaceous particles. Because of the complex orography of the Ersa site, an original method for calculating an orographic representativeness error (ORE) has been developed. It is concluded that the modified VBS scheme is close to observations in all three aspects mentioned above; the standard VBS scheme without BSOA (biogenic secondary organic aerosol) aging also has a satisfactory performance in simulating the mass concentration of OA, but not for the source origin analysis comparisons. In addition, the OA sources over the western Mediterranean basin are explored. OA shows a major biogenic origin, especially at several hundred meters height from the surface; however over the Gulf of Genoa near the surface, the anthropogenic origin is of similar importance. A general assessment of other species was performed to evaluate the robustness of the simulations for this particular domain before evaluating OA simulation schemes. It is also shown that the Cap Corse site presents important orographic complexity, which makes comparison between model simulations and observations difficult. A method was designed to estimate an orographic representativeness error for species measured at Ersa and yields an uncertainty of between 50 and 85 % for primary pollutants, and around 2–10 % for secondary species.


2015 ◽  
Vol 3 (6) ◽  
pp. 3687-3732 ◽  
Author(s):  
U. Dayan ◽  
K. M. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes producing heavy rain storms. It distinguishes the Western and Eastern Mediterranean in order to point at specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger scale circulations. The synoptic systems (tropical and extra-tropical) accounting for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper-level synoptic-scale troughs, and meso-scale convective systems. Under tropical air mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2021 ◽  
Author(s):  
Johannes Vogel

<p>The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 – 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.</p>


2015 ◽  
Vol 15 (11) ◽  
pp. 2525-2544 ◽  
Author(s):  
U. Dayan ◽  
K. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2017 ◽  
Vol 58 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Giulia Furfaro ◽  
Egidio Trainito ◽  
Franco De Lorenzi ◽  
Marco Fantin ◽  
Mauro Doneddu

The nudibranch Tritonia nilsodhneri, usually feeding on a variety of gorgoniacean species, is known from different localities of the eastern Atlantic Ocean and the Mediterranean Sea. Knowledge of the host preferences of the Mediterranean populations is still scarce. Few records of this nudibranch have been reported from the eastern Mediterranean basin. With this report, the occurrence of T. nilsodhneri within the Mediterranean basin is extended to the Adriatic Sea. Furthermore, the list of the host species associated to the Mediterranean populations for feeding habits is increased from two up to five. Mediterranean specimens of T. nilsodhneri were observed for the first time feeding and spawning on Leptogorgia sarmentosa, Eunicella cavolini and E. labiata. Finally, these last two Gorgoniidae species are also reported here as a new host species for T. nilsodhneri.


2015 ◽  
Vol 15 (15) ◽  
pp. 21607-21669 ◽  
Author(s):  
C. Denjean ◽  
F. Cassola ◽  
A. Mazzino ◽  
S. Triquet ◽  
S. Chevaillier ◽  
...  

Abstract. This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational dataset necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin.


2018 ◽  
Vol 99 (2) ◽  
pp. 361-380 ◽  
Author(s):  
Philippe Ricaud ◽  
Régina Zbinden ◽  
Valéry Catoire ◽  
Vanessa Brocchi ◽  
François Dulac ◽  
...  

Abstract The Gradient in Longitude of Atmospheric Constituents above the Mediterranean Basin (GLAM) airborne campaign was set up to investigate the summertime variability of gaseous pollutants, greenhouse gases, and aerosols between the western (∼3°E) and eastern (∼35°E) sections of the Mediterranean basin as well as how this connects with the impact of the Asian monsoon anticyclone on the eastern Mediterranean in the mid- to upper troposphere (∼5–10 km). GLAM falls within the framework of the Chemistry–Aerosol Mediterranean Experiment (ChArMEx) program. GLAM used the French Falcon-20 research aircraft to measure aerosols, humidity, and chemical compounds: ozone, carbon monoxide, methane, and carbon dioxide. GLAM took place between 6 and 10 August 2014, following a route from Toulouse (France) to Larnaca (Cyprus) and back again via Minorca (Spain), Lampedusa (Italy), and Heraklion (Crete, Greece). The aircraft flew at an altitude of 5 km on its outbound journey and 10 km on the return leg. GLAM also collected vertical profiles around the landing sites listed above. A combination of model outputs, chemical mapping analyses, and spaceborne and surface station measurements gathered prior to and during the campaign were used to interpret the in situ airborne measurements. The main outcome of this study is the impact of intercontinental transport on the longitudinal variability of pollutants, greenhouse gases, and aerosols at an altitude of 10 km. The eastern Mediterranean is affected by air masses from the Arabian Sea surface, and the western Mediterranean is impacted by air masses from North America (biomass burning) and West Africa (desert dust).


Sign in / Sign up

Export Citation Format

Share Document