scholarly journals Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands

2016 ◽  
Vol 12 (6) ◽  
pp. 1361-1374 ◽  
Author(s):  
Rudolf Brázdil ◽  
Ladislava Řezníčková ◽  
Hubert Valášek ◽  
Lukáš Dolák ◽  
Oldřich Kotyza

Abstract. The eruption of Mount Tambora in Indonesia in 1815 was one of the most powerful of its kind in recorded history. This contribution addresses climatic responses to it, the post-eruption weather, and its impacts on human life in the Czech Lands. The climatic effects are evaluated in terms of air temperature and precipitation on the basis of long-term homogenised series from the Prague-Klementinum and Brno meteorological stations, and mean Czech series in the short term (1810–1820) and long term (1800–2010). This analysis is complemented by other climatic and environmental data derived from rich documentary evidence. Czech documentary sources make no direct mention of the Tambora eruption, neither do they relate any particular weather phenomena to it, but they record an extremely wet summer for 1815 and an extremely cold summer for 1816 (the "Year Without a Summer") that contributed to bad grain harvests and widespread grain price increases in 1817. Possible reasons for the cold summers in the first decade of the 19th century reflected in the contemporary press included comets, sunspot activity, long-term cooling and finally – as late as 1817 – earthquakes with volcanic eruptions.

2016 ◽  
Author(s):  
Rudolf Brázdil ◽  
Ladislava Řezníčková ◽  
Hubert Valášek ◽  
Lukáš Dolák ◽  
Oldřich Kotyza

Abstract. The eruption of Mount Tambora in Indonesia in 1815 was one of the most powerful of its kind in recorded history. This contribution addresses climatic responses to it, the post-eruption weather, and its impacts on human life in the Czech Lands. The climatic effects are evaluated in terms of air temperature and precipitation on the basis of long-term homogenised series from the Prague-Klementinum and Brno meteorological stations, and mean Czech series in the short term (1810–1820) and long-term (1800–2010). This analysis is complemented by other climatic and environmental data derived from rich documentary evidence. Czech documentary sources make no direct mention of the Tambora eruption, neither do they relate any particular weather phenomena to it, but they record extremely cold and wet summers for 1815 and 1816 (the "Year Without a Summer") that contributed to bad grain harvests and widespread grain price increases in 1817. Possible reasons for the cold summers in the first decade of the 19th century cited in the contemporary press included comets, sunspot activity, long-term cooling and finally – as late as 1817 – earthquakes with volcanic eruptions. Here, the Tambora event is compared with the 1783 eruption of Lakagígar in Iceland, with its clearly-pronounced post-volcanic effects on the weather in central Europe (dry fog, heavy thunderstorms, optical phenomena) and the occurrence of significant cold temperature anomalies in winter 1783/84, spring 1784 and the summer and autumn of 1785. These appeared clearly in central European series, Prague-Klementinum included. Comparison of the two eruptions shows that the effects of the Lakagígar eruption in the Czech Lands were climatologically stronger those of the Tambora eruption, while the opposite held for societal responses.


Geografie ◽  
2017 ◽  
Vol 122 (2) ◽  
pp. 147-168 ◽  
Author(s):  
Rudolf Brázdil ◽  
Ladislava Řezníčková ◽  
Hubert Valášek ◽  
Lukáš Dolák ◽  
Oldřich Kotyza

Using documentary data and long-term temperature and precipitation series for the years 1775–2007, climatic, weather and other phenomena in the Czech Lands following the 1783 Lakagígar eruption in Iceland and the 1815 Tambora eruption in Indonesia are investigated. The Lakagígar eruption had clear post-volcanic effects on the weather in central Europe (dry fog, heavy thunderstorms, optical phenomena), with the occurrence of significant cold temperature anomalies in winter 1783/84, spring 1785 and the summer and autumn of 1786. The Tambora eruption was not accompanied by any particular weather phenomena, but was followed by an extremely cold summer in 1816. A comparison of the two eruptions shows that the effects of the Lakagígar eruption were climatologically stronger than those of the Tambora eruption.


2014 ◽  
Vol 125 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Jiří Mikšovský ◽  
Rudolf Brázdil ◽  
Petr Štĕpánek ◽  
Pavel Zahradníček ◽  
Petr Pišoft

2013 ◽  
Vol 9 (4) ◽  
pp. 1985-2002 ◽  
Author(s):  
R. Brázdil ◽  
P. Dobrovolný ◽  
M. Trnka ◽  
O. Kotyza ◽  
L. Řezníčková ◽  
...  

Abstract. This paper addresses droughts in the Czech Lands in the 1090–2012 AD period, basing its findings on documentary evidence and instrumental records. Various documentary sources were employed for the selection of drought events, which were then interpreted at a monthly level. While the data on droughts before 1500 AD are scarce, the analysis concentrated mainly on droughts after this time. A dry year in 1501–1804 period (i.e. pre-instrumental times) was defined as a calendar year in the course of which dry patterns occurred on at least two consecutive months. Using this definition, 129 dry years were identified (an average of one drought per 2.4 yr). From the 16th to the 18th centuries these figures become 41, 36 and 49 yr respectively, with the prevailing occurrence of dry months from April to September (73.7%). Drought indices – SPEI-1, Z-index and PDSI – calculated for the Czech Lands for April–September describe drought patterns between 1805 and 2012 (the instrumental period). N-year recurrence intervals were calculated for each of the three indices. Using N ≥ 5 yr, SPEI-1 indicates 40 drought years, Z-index 39 yr and PDSI 47 yr. SPEI-1 and Z-index recorded 100 yr drought in 1834, 1842, 1868, 1947 and 2003 (50 yr drought in 1992). PDSI as an indicator of long-term drought disclosed two important drought periods: 1863–1874 and 2004–2012. The first period was related to a lack of precipitation, the other may be attributed to recent temperature increases without significant changes in precipitation. Droughts from the pre-instrumental and instrumental period were used to compile a long-term chronology for the Czech Lands. The number of years with drought has fluctuated between 26 in 1951–2000 and 16 in 1651–1700. Only nine drought years were recorded between 1641 and 1680, while between 1981 and 2012 the figure was 22 yr. A number of past severe droughts are described in detail: in 1540, 1590, 1616, 1718 and 1719. A discussion of the results centres around the uncertainty problem, the spatial variability of droughts, comparison with tree-ring reconstructions from southern Moravia, and the broader central European context.


2013 ◽  
Vol 9 (3) ◽  
pp. 2423-2470 ◽  
Author(s):  
R. Brázdil ◽  
P. Dobrovolný ◽  
M. Trnka ◽  
O. Kotyza ◽  
L. Řezníčková ◽  
...  

Abstract. This paper addresses droughts in the Czech Lands in the 1090–2012 AD period, basing its findings on documentary evidence and instrumental records. Various documentary sources were employed for the selection of drought events, which were then interpreted at a monthly level. While the data on droughts before 1500 AD are scarce, the analysis concentrated mainly on droughts after this time. A dry year in 1501–1804 period (i.e. pre-instrumental times) was defined as a calendar year in the course of which dry patterns occurred on at least two consecutive months. Using this definition, 129 dry years were identified (an average of one drought per 2.4 yr). From the 16th to the 18th centuries these figures become 41, 36 and 49 yr, respectively, with the prevailing occurrence of dry months from April to September (73.7%). Drought indices – SPEI-1, Z-index and PDSI – calculated for the Czech Lands for April–September describe drought patterns between 1805 and 2012 (the instrumental period). N year recurrence intervals were calculated for each of the three indices. Using N ≥ 5 yr, SPEI-1 indicates 40 drought years, Z-index 39 yr and PDSI 47 yr. SPEI-1 and Z-index recorded 100 yr drought in 1834, 1842, 1868, 1947 and 2003 (50 yr drought in 1992). PDSI as an indicator of long-term drought disclosed two important drought periods: 1863–1874 and 2004–2012. The first period was related to a lack of precipitation, the other may be attributed to recent temperature increases without significant changes in precipitation. Droughts from the pre-instrumental and instrumental period were used to compile a long-term chronology for the Czech Lands. The number of years with drought has fluctuated between 26 in 1951–2000 and 16 in 1651–1700. Only nine drought years were recorded between 1641 and 1680, while between 1981 and 2012 the figure was 22 yr. A number of past severe droughts are described in detail: in 1540, 1590, 1616, 1718 and 1719. A discussion of the results centres around the uncertainty problem, the spatial variability of droughts, comparison with tree-ring reconstructions from southern Moravia, and the broader Central European context.


2020 ◽  
Author(s):  
Sergey Osipov ◽  
Georgiy Stenchikov ◽  
Kostas Tsigaridis ◽  
Allegra LeGrande ◽  
Susanne Bauer ◽  
...  

<p>Volcanic eruptions trigger a broad spectrum of climatic responses. For example, the Mount Pinatubo eruption in 1991 forced an El Niño and global cooling, and the Tambora eruption in 1815 caused the "Year Without a Summer." Especially grand eruptions such as Toba around 74,000 years ago can push the Earth's climate into a volcanic winter state, significantly lowering the surface temperature and precipitation globally. Here we present a new, previously overlooked element of the volcanic effects spectrum: the radiative mechanism of stratospheric ozone depletion. We found that the volcanic plume of Toba enhanced the UV optical depth and suppressed the primary formation of stratospheric ozone from O<sub>2</sub> photolysis. Sulfate aerosols additionally reflect the photons needed to break the O<sub>2</sub> bond (λ < 242 nm), otherwise controlled by ozone absorption and Rayleigh scattering alone during volcanically quiescent conditions. Our NASA GISS ModelE simulations of the Toba eruption reveal up to 50% global ozone loss due to the overall photochemistry perturbations of the sulfate aerosols. We also consider and quantify the radiative effects of SO<sub>2</sub>, which partially compensated for the ozone loss by inhibiting the photolytic O<sub>3</sub> sink.</p><p>Our analysis shows that the magnitude of the ozone loss and UV-induced health-hazardous effects after the Toba eruption are similar to those in the aftermath of a potential nuclear conflict. These findings suggest a “Toba ozone catastrophe" as a likely contributor to the historic population decline in this period, consistent with a genetic bottleneck in human evolution.</p>


Author(s):  
Roy Livermore

The Earth’s climate changes naturally on all timescales. At the short end of the spectrum—hours or days—it is affected by sudden events such as volcanic eruptions, which raise the atmospheric temperature directly, and also indirectly, by the addition of greenhouse gases such as water vapour and carbon dioxide. Over years, centuries, and millennia, climate is influenced by changes in ocean currents that, ultimately, are controlled by the geography of ocean basins. On scales of thousands to hundreds of thousands of years, the Earth’s orbit around the Sun is the crucial influence, producing glaciations and interglacials, such as the one in which we live. Longer still, tectonic forces operate over millions of years to produce mountain ranges like the Himalayas and continental rifts such as that in East Africa, which profoundly affect atmospheric circulation, creating deserts and monsoons. Over tens to hundreds of millions of years, plate movements gradually rearrange the continents, creating new oceans and destroying old ones, making and breaking land and sea connections, assembling and disassembling supercontinents, resulting in fundamental changes in heat transport by ocean currents. Finally, over the very long term—billions of years—climate reflects slow changes in solar luminosity as the planet heads towards a fiery Armageddon. All but two of these controls are direct or indirect consequences of plate tectonics.


Author(s):  
Cymie R. Payne

The principle of ‘environmental integrity’ is a fundamental aspect of jus post bellum. Human life, economy, and culture depend on a healthy, functioning environment. However, environmental integrity is a complex concept to describe. Doctrinal thresholds for legally material environmental damage (significant, long-term, widespread) do not capture it. This chapter interrogates the jus post bellum literature and then turns to scholarship on wilderness management in the Anthropocene era, which also engages with the meaning of ‘environmental integrity’, ‘naturalness’, ‘unimpaired’, or, in the words of the Factory at Chorzów case which sets the international law standard for reparations of damage, ‘the situation which would, in all probability, have existed if that act had not been committed’. Recognition that pristine or historical conditions are often impossible to recover or maintain leads to the legal, ethical, and scientific analysis of evolving environmental norms that this chapter offers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atanu Bhattacharya ◽  
Tobias Bolch ◽  
Kriti Mukherjee ◽  
Owen King ◽  
Brian Menounos ◽  
...  

AbstractKnowledge about the long-term response of High Mountain Asian glaciers to climatic variations is paramount because of their important role in sustaining Asian river flow. Here, a satellite-based time series of glacier mass balance for seven climatically different regions across High Mountain Asia since the 1960s shows that glacier mass loss rates have persistently increased at most sites. Regional glacier mass budgets ranged from −0.40 ± 0.07 m w.e.a−1 in Central and Northern Tien Shan to −0.06 ± 0.07 m w.e.a−1 in Eastern Pamir, with considerable temporal and spatial variability. Highest rates of mass loss occurred in Central Himalaya and Northern Tien Shan after 2015 and even in regions where glaciers were previously in balance with climate, such as Eastern Pamir, mass losses prevailed in recent years. An increase in summer temperature explains the long-term trend in mass loss and now appears to drive mass loss even in regions formerly sensitive to both temperature and precipitation.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


Sign in / Sign up

Export Citation Format

Share Document