scholarly journals Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes

2018 ◽  
Vol 14 (10) ◽  
pp. 1361-1375 ◽  
Author(s):  
Anastasia Zhuravleva ◽  
Henning A. Bauch

Abstract. Paleorecords and modeling studies suggest that instabilities in the Atlantic Meridional Overturning Circulation (AMOC) strongly affect the low-latitude climate, namely via feedbacks on the Atlantic Intertropical Convergence Zone (ITCZ). Despite the pronounced millennial-scale overturning and climatic variability documented in the subpolar North Atlantic during the last interglacial period (MIS 5e), studies on cross-latitudinal teleconnections remain very limited. This precludes a full understanding of the mechanisms controlling subtropical climate evolution across the last warm cycle. Here, we present new planktic foraminiferal assemblage data combined with δ18O values in surface and thermocline-dwelling foraminifera from the Bahamas, a region ideally suited to studying past changes in the subtropical ocean and atmosphere. Our data reveal that the peak sea surface warmth during early MIS 5e was intersected by an abrupt millennial-scale cooling/salinification event, which was possibly associated with a sudden southward displacement of the mean annual ITCZ position. This atmospheric shift is, in turn, ascribed to the transitional climatic regime of early MIS 5e, which was characterized by persistent ocean freshening in the high latitudes and an unstable AMOC mode.

2018 ◽  
Author(s):  
Anastasia Zhuravleva ◽  
Henning A. Bauch

Abstract. Shallow-water sediments of the Bahama region containing the last interglacial (MIS 5e) are ideal to investigate the region's sensitivity to past climatic and sea level changes. Here we present new faunal, isotopic and XRF-sediment core data from the northern slope of the Little Bahama Bank. The results suggest that the bank top remained flooded across the last interglacial plateau, ~ 129–117 ka, arguing for a relative sea level above −6 m for this time period. In addition, climatic variability, which today is closely coupled with movements of the intertropical convergence zone (ITCZ), is interpreted based on stable isotopes and foraminiferal assemblage records. During early MIS 5e, the mean annual ITCZ position moved northward in line with increased solar forcing and a recovered Atlantic Meridional Overturning Circulation (AMOC). The early MIS 5e warmth peak was intersected, however, by a millennial-scale cooling event, consistent with a southward shift in the mean annual ITCZ position. This tropical shift is ascribed to the transitional climatic regime of early MIS 5e, characterized by persistent high-latitude freshening and, thereby, unstable AMOC mode. Our records from the Bahama region demonstrate that not only was there a tight relation between local sedimentation regimes and last interglacial sea level history, via the atmospheric forcing we could further infer an intra-interglacial connectivity between the polar and subtropical latitudes that left its imprint also on the ocean circulation.


2016 ◽  
Vol 86 (3) ◽  
pp. 373-387 ◽  
Author(s):  
Dulce Oliveira ◽  
Stephanie Desprat ◽  
Teresa Rodrigues ◽  
Filipa Naughton ◽  
David Hodell ◽  
...  

AbstractClimatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land—sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Laurie Menviel ◽  
Aline Govin ◽  
Arthur Avenas ◽  
Katrin J. Meissner ◽  
Katharine M. Grant ◽  
...  

AbstractDuring orbital precession minima, the Sahara was humid and more vegetated, providing potential corridors for Hominins migration. Uncertainties remain over the climatic processes controlling the initiation, demise and amplitude of these African Humid Periods. Here we study these processes using a series of transient simulations of the penultimate deglaciation and Last Interglacial period, and compare the results with a transient simulation of the last deglaciation and Holocene. We find that the strengthening of the Atlantic Meridional Overturning Circulation at the end of deglacial millennial-scale events exerts a dominant control on the abrupt initiation of African Humid Periods as the Atlantic Meridional Overturning Circulation modulates the position of the Intertropical Convergence Zone. In addition, residual Northern Hemispheric ice-sheets can delay the peak of the African Humid Period. Through its impact on Northern Hemispheric ice-sheets disintegration and thus Atlantic Meridional Overturning Circulation, the larger rate of insolation increase during the penultimate compared to the last deglaciation can explain the earlier and more abrupt onset of the African Humid Period during the Last Interglacial period. Finally, we show that the mean climate state modulates precipitation variability, with higher variability under wetter background conditions.


2022 ◽  
Author(s):  
Maria Vittoria Guarino ◽  
Louise Sime ◽  
David Schroeder ◽  
Jeff Ridley

Abstract. The Heinrich 11 event is simulated using the HadGEM3 model during the Last Interglacial period. We apply 0.2 Sv of meltwater forcing across the North Atlantic during a 250 years long simulation. We find that the strength of the Atlantic Meridional Overturning Circulation is reduced by 60 % after 150 years of meltwater forcing, with an associated decrease of 0.2 to 0.4 PW in meridional ocean heat transport at all latitudes. The changes in ocean heat transport affect surface temperatures. The largest increase in the meridional surface temperature gradient occurs between 40–50 N. This increase is associated with a strengthening of 20 % in 850 hPa winds. The stream jet intensification in the Northern Hemisphere in return alters the temperature structure of the ocean heat through an increased gyre circulation, and associated heat transport (+0.1–0.2 PW), at the mid-latitudes, and a decreased gyre ocean heat transport (−0.2 PW) at high-latitudes. The changes in meridional temperature and pressure gradients cause the Intertropical Convergence Zone (ITCZ) to move southward, leading to stronger westerlies and a more positive Southern Annual Mode (SAM) in the Southern Hemisphere. The positive SAM influences sea ice formation leading to an increase in Antarctic sea ice. Our coupled-model simulation framework shows that the classical "thermal bipolar see-saw'' has previously undiscovered consequences in both Hemispheres: these include Northern Hemisphere gyre heat transport and wind changes; alongside an increase in Antarctic sea ice during the first 250 years of meltwater forcing.


2013 ◽  
Vol 9 (2) ◽  
pp. 605-619 ◽  
Author(s):  
P. Bakker ◽  
E. J. Stone ◽  
S. Charbit ◽  
M. Gröger ◽  
U. Krebs-Kanzow ◽  
...  

Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.


2009 ◽  
Vol 5 (1) ◽  
pp. 53-72 ◽  
Author(s):  
S. Desprat ◽  
M. F. Sánchez Goñi ◽  
J. F. McManus ◽  
J. Duprat ◽  
E. Cortijo

Abstract. We present a new high-resolution marine pollen record from NW Iberian margin sediments (core MD03-2697) covering the interval between 340 000 and 270 000 years ago, a time period centred on Marine Isotope Stage (MIS) 9 and characterized by particular baseline climate states. This study enables the documentation of vegetation changes in the north-western Iberian Peninsula and therefore the terrestrial climatic variability at orbital and in particular at millennial scales during MIS 9, directly on a marine stratigraphy. Suborbital vegetation changes in NW Iberia in response to cool/cold events are detected throughout the studied interval even during MIS 9e ice volume minimum. However, they appear more frequent and of higher amplitude during the 30 000 years following the MIS 9e interglacial period and during the MIS 9a-8 transition, which correspond to intervals of an intermediate to high ice volume and mainly periods of ice growth. Each suborbital cold event detected in NW Iberia has a counterpart in the Southern Iberian margin SST record. High to moderate amplitude cold episodes detected on land and in the ocean appear to be related to changes in deep water circulation and probably to iceberg discharges at least during MIS 9d, the mid-MIS 9c cold event and MIS 9b. This work provides therefore additional evidence of pervasive millennial-scale climatic variability in the North Atlantic borderlands throughout past climatic cycles of the Late Pleistocene, regardless of glacial state. However, ice volume might have an indirect influence on the amplitude of the millennial climatic changes in Southern Europe.


2002 ◽  
Vol 58 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Daniel R. Muhs

AbstractThe last interglacial period has a timing and duration that can be estimated from U-series dating of emergent, coral-bearing deposits on tectonically stable coastlines. High-precision dating from Bermuda, the Bahamas, Hawaii, and Australia suggests that the last interglacial period had a sea level at least as high as present from ∼128,000 to 116,000 yr B.P. Sea level reached a near-present level more quickly after the close of the penultimate glacial period than at the close of the last glacial period and the duration of high sea level is longer than that implied by the deep-sea record.


1988 ◽  
Vol 10 ◽  
pp. 199-200 ◽  
Author(s):  
J.M. Barnola ◽  
C. Genthon ◽  
D. Raynaud ◽  
J. Jouzel ◽  
Ye.S. Korotkevich ◽  
...  

This is a summary of the main CO2 results obtained from the Vostok core which have been presented in two papers recently published (Barnola and others 1987; Genthon and others 1987). Previous results of ice-core analysis have already provided valuable information on atmospheric CO2 variations associated with anthropogenic activities (Neftel and others 1985, Raynaud and Barnola 1985[a], Pearman and others 1986) and with climatic variations back to about 40 ka ago (Delmas and others 1980, Neftel and others 1982, Raynaud and Barnola 1985[b]). The Antarctic Vostok ice core provides a unique opportunity for extending the ice record of atmospheric CO2 variations over the last glacial–interglacial cycle back to the end of the penultimate ice age, about 160 ka ago. CO2 measurements were made at 66 different depth levels on the air enclosed in the 2083 m long core taken at Vostok Station. The air was extracted by crushing the ice, under vacuum, in a cold-room, and analysed by gas chromatography (Barnola and others 1983). The selected sampling corresponds to a time resolution between two neighbouring levels which range approximately from 2000 to 4500 years. The ages quoted in this abstract are based on the Vostok ice chronology given by Lorius and others (1985) and take into account the fact that the air is trapped in the firn well after snow deposition (between about 2500 and 4300 years after precipitation in the case of Vostok). The CO2 variations observed are compared directly with the changes in Antarctic temperature as depicted by the stable-isotope record of the Vostok ice (Jouzel and others 1988, this volume). Furthermore, a CO2-orbital forcing-climate interaction is suggested by spectral analysis of the CO2 and temperature profiles, which both show a concentration of variance around orbital frequencies. The temperature profile is clearly dominated by a 40 ka period (which can be related to the obliquity frequency) (Jouzel and others 1988, this volume), whereas the CO2 record exhibits a well-defined 21 ka peak (which can be related to the precession frequencies) and only a weak and doubtful 40 ka peak. To check the relative influence of CO2 and orbital forcings on the temperature at Vostok, we modelled the temperature signal deduced from the stable-isotope record of the ice as a response to CO2, Northern Hemisphere ice volume and local insolation forcings. The results indicate that more than 90% of the temperature variance can be explained by these three kinds of forcing and that the contribution of the CO2 radiative effect associated with an amplification factor (which should reflect the long-term feed-back mechanisms) lies between 27 and 85% of the explained variance. This approach stresses the important role that CO2 may generally have played in determining the Earth’s climate during the late Pleistocene. The most obvious feature of the Vostok CO2 record lies in its high correlation (r2 = 0.79) with the climatic record. The results obtained show high CO2 concentrations during warm periods (mean CO2 values of 263 ppm volume for the Holocene and 272 ppm volume for the last interglacial period) and low concentrations (between about 240 and 190 ppm volume) over glacial periods. Within the last glaciation, the CO2 concentrations are higher during the first part (mean CO2 value of 230 ppm volume between about 110–65 ka B.P.) than during the second part (203 ppm volume between 65–15 ka B.P.); the second part also indicates that climatic conditions were colder. Our results point to some limitation on the possible mechanisms driving the atmospheric CO2 variations and, in particular, the influence of some oceanic areas or of changes in sea-level (see, for example, Broecker and Peng 1986). The weak 41 ka cycle (this cycle seems to be a characteristic of the spectra of the proxy data for high latitudes) in our CO2 record suggests that high latitudes may not have a major influence on CO2 variations. Furthermore, the phase relationship between CO2 and the temperature variations indicates that at the beginning of the two deglaciations around 145ka B.P. and 15ka B.P., taking into account the time resolution of our profile, the CO2 increases roughly in phase with the Vostok temperature. As surface-temperature changes around Antarctica are expected to lead to changes in sea-level (see, for instance, CLIMAP Project Members 1984), our results suggest that the CO2 increase cannot lag the increase in sea-level and thus that this parameter cannot initiate the CO2 variation recorded at the beginning of those two deglaciations. Nevertheless, this does not rule out influence of variations in sea-level on atmospheric CO2 for other periods of interest, in particular during the last interglacial–glacial transition, where the CO2 lags the Vostok temperature.


Sign in / Sign up

Export Citation Format

Share Document